精英家教网 > 高中数学 > 题目详情
4.设等差数列{an}的前n项和为Sn,且S5=a5+a6=25.
(1)求{an}的通项公式;
(2)若不等式2Sn+8n+27>(-1)nk(an+4)对所有的正整数n都成立,求实数k的取值范围.

分析 (1)利用等差数列通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出{an}的通项公式.
(2)求出Sn,从而3n2+3n+27>(-1)nk•3n,由此能求出实数k的取值范围.

解答 解:(1)∵等差数列{an}的前n项和为Sn,且S5=a5+a6=25,
∴$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}d=25}\\{{a}_{1}+4d+{a}_{1}+5d=25}\end{array}\right.$,
解得a1=-1,d=3,
∴{an}的通项公式an=-1+(n-1)×3=3n-4.
(2)∵a1=-1,d=3,
∴${S}_{n}=-n+\frac{n(n-1)}{2}×3$=$\frac{3}{2}{n}^{2}-\frac{5}{2}n$.
∵不等式2Sn+8n+27>(-1)nk(an+4)对所有的正整数n都成立,
∴3n2+3n+27>(-1)nk•3n,
∴(-1)nk<n+$\frac{9}{n}$+1对所有的正整数n都成立,
当n为偶数时,k<n+$\frac{9}{n}$+1,
设F(n)=n+$\frac{9}{n}$+1,
F(n)min=F(4)=4+$\frac{9}{4}+1$=$\frac{29}{4}$.
∴k<$\frac{29}{4}$.
当n为奇数时,-k<n+$\frac{9}{n}$+1,k>-(n+$\frac{9}{n}$+1),
-(n+$\frac{9}{n}$+1)≤-2$\sqrt{n•\frac{9}{n}}$-1=-7,
当且仅当n=$\frac{9}{n}$,即n=3时,取等号,
∴实数k的取值范围是(-7,$\frac{29}{4}$).

点评 本题考查数列的通项公式的求法,考查实数取值范围的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设全集为R,集合M={x|(x+a)(x-1)≤0}(a>0),集合N={x|4x2-4x-3<0}.
(1)若M∪N={x|-2≤x<$\frac{3}{2}$},求实数a的值;
(2)若N∪(∁RM)=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a$,$\overrightarrow b$的夹角为$\frac{π}{3}$,且$|{\overrightarrow b}$|=1,$|{\overrightarrow a-2\overrightarrow b}|=\sqrt{7}$,$|{\overrightarrow a}$|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$x2-mlnx.
(1)求函数f(x)的极值;
(2)若m≥1,试讨论关于x的方程f(x)=x2-(m+1)x的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若f(x)=ax3+4x+5的图象在(1,f(1))处的切线在x轴上的截距为-$\frac{3}{7}$.则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,终边在直线x+3y=0上,则cos2α的值为(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线l:y=k(x+1)+$\sqrt{3}$与圆x2+y2=4交于A、B两点,过A、B分别做l的垂线与x轴交于C、D两点,若|AB|=4,则|CD|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知z轴上一点N到点A(1,0,3)与点B(-1,1,-2)的距离相等,则点N的坐标为(  )
A.(0,0,-$\frac{1}{2}$)B.(0,0,-$\frac{2}{5}$)C.(0,0,$\frac{1}{2}$)D.(0,0,$\frac{2}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=cosx(x∈[0,2π])与函数g(x)=tanx的图象交于M,N两点,则|$\overrightarrow{OM}$+$\overrightarrow{ON}$|=π.

查看答案和解析>>

同步练习册答案