精英家教网 > 高中数学 > 题目详情
2.在直角坐标系中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=$\frac{\sqrt{3}}{2cos(θ-\frac{π}{6})}$.
(1)设A($\sqrt{5}$,0),F1,F2分别是曲线C的上,下焦点,求经过点F1且垂直于直线AF2的直线m的参数方程.
(2)已知点P的极坐标为($\sqrt{3}$,$\frac{π}{2}$),设直线l与曲线C的两个交点为M,N,求|PM|•|PN|的值.

分析 (1)曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(φ为参数),利用sin2φ+cos2φ=1,可得直角坐标方程,可得F1,F2.可得${k}_{A{F}_{2}}$,可得直线AF2的直线m的斜率,即可得出经过点F1且垂直于直线AF2的直线m的参数方程.
(2)点P的极坐标为($\sqrt{3}$,$\frac{π}{2}$),化为直角坐标P$(0,\sqrt{3})$.直线l的极坐标方程为ρ=$\frac{\sqrt{3}}{2cos(θ-\frac{π}{6})}$,展开为2ρ$(\frac{\sqrt{3}}{2}cosθ+\frac{1}{2}sinθ)$,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$可得直角坐标方程.可得参数方程.代入椭圆方程利用|PM|•|PN|=|t1t2|即可得出.

解答 解:(1)曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(φ为参数),化为$\frac{{y}^{2}}{15}+\frac{{x}^{2}}{5}$=1,可得F1(0,$\sqrt{10}$),F2(0,-$\sqrt{10}$).
∴${k}_{A{F}_{2}}$=$\sqrt{2}$,∴直线AF2的直线m的斜率为$-\frac{\sqrt{2}}{2}$.
∴经过点F1且垂直于直线AF2的直线m的参数方程为$\left\{\begin{array}{l}{x=-\frac{\sqrt{6}}{3}t}\\{y=\sqrt{10}+\frac{\sqrt{3}}{3}t}\end{array}\right.$.(t为参数).
(2)点P的极坐标为($\sqrt{3}$,$\frac{π}{2}$),化为直角坐标P$(0,\sqrt{3})$.
直线l的极坐标方程为ρ=$\frac{\sqrt{3}}{2cos(θ-\frac{π}{6})}$,展开为2ρ$(\frac{\sqrt{3}}{2}cosθ+\frac{1}{2}sinθ)$,化为$\sqrt{3}x+y$=$\sqrt{3}$.
可得参数方程为:$\left\{\begin{array}{l}{x=1-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数).
代入椭圆方程可得:t2-2t-8=0,
∴|PM|•|PN|=|t1t2|=8.

点评 本题考查了极坐标与直角坐标的互化、参数方程的应用、直线与椭圆相交弦长问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.给出下列四个命题:
(1)若a>b,c>d,则a-d>b-c;
(2)若a2x>a2y,则x>y;
(3)a>b,则$\frac{1}{a-b}>\frac{1}{a}$;
(4)若$\frac{1}{a}<\frac{1}{b}<0$,则ab<b2
其中正确命题是(1)(2)(4).(填所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题为真命题的是(  )
A.椭圆的离心率大于1
B.双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=-1的焦点在x轴上
C.?x∈R,sinx+cosx=$\frac{7}{5}$
D.?a,b∈R,$\frac{a+b}{2}$≥$\sqrt{ab}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2016x+log2016x,则函数f(x)的零点的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列各组中两个函数是同一函数的是(  )
A.f(x)=$\root{4}{{x}^{4}}$与g(x)=($\root{4}{x}$)4B.f(x)=x与g(x)=$\root{3}{{x}^{3}}$
C.f(x)=lnex与g(x)=elnxD.f(x)=$\frac{{x}^{2}-4}{x+2}$ 与g(x)=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2x+b,g(x)=x2+bx+c,其中b、c∈R,设$h(x)=\frac{g(x)}{f(x)}$.
(1)如果h(x)为奇函数,求实数b、c满足的条件;
(2)在(1)的条件下,若函数h(x)在区间[2,+∞)上为增函数,求c的取值范围;
(3)若对任意的x∈R恒有f(x)≤g(x)成立.证明:当x≥0时,g(x)≤(x+c)2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=4x+\frac{a}{x}+b$,(a,b∈R)为奇函数.
(1)求b值;
(2)当a=-2时,存在x0∈[1,4]使得不等式f(x0)≤t成立,求实数t的取值范围;
(3)当a≥1时,求证:函数g(x)=f(2x)-c(c∈R)在区间(-∞,-1]上至多有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若圆的方程为x2+2x+y2+4y-4=0,则该圆的圆心坐标为(-1,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若集合A={a,b}与B={x|x2-3ax+1-a=0},且A=B,则实数ab=$\frac{1}{2}$,或2.

查看答案和解析>>

同步练习册答案