精英家教网 > 高中数学 > 题目详情
8.已知0<α<$\frac{π}{2}$,则sinα,α,tanα的大小关系为(  )
A.tanα>sinα>αB.α>tanα>sinαC.sinα>α>tanαD.tanα>α>sinα

分析 由题意作出三角函数线,进而比较S△AOP,S扇形AOP,S△AOT的大小,可得答案.

解答 解:在直角坐标系中结合单位圆作出锐角α的正弦线和正切线,

由图可知sinα=MP,α=$\widehat{AP}$,tanα=AT,
∵S△AOP=$\frac{1}{2}$×MP×1=$\frac{1}{2}$sinα,
S扇形AOP=$\frac{1}{2}$×$\widehat{AP}$×1=$\frac{1}{2}$α,
S△AOT=$\frac{1}{2}$×AT×1=$\frac{1}{2}$tanα,
∵S△AOP<S扇形AOP<S△AOT
∴MP<$\widehat{AP}$<AT,
即sinα<α<tanα,
故选:D.

点评 本题考查单位圆与三角函数线,难度不大,属基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{\frac{2}{x}(x≥2)}\\{(x-1)^{3}(x<2)}\end{array}\right.$,若函数y=f(x)-k有两个零点,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=log0.2(-4x+5)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.sinx+$\sqrt{3}$cosx=a在区间(0,2π)内的个相异的实数根x1,x2
(1)求a的取值范围;
(2)求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设二次函数f(x)=x2+mx+p在点(2,f(2))处的切线方程为3x-y-2=0.
(1)求f(x)的解析式;
(2)用数学归纳法证明:$\frac{1}{\sqrt{f′(1)}}$+$\frac{1}{\sqrt{f′(2)}}$+…+$\frac{1}{\sqrt{f′(n)}}$≤$\sqrt{2n-1}$对一切n∈N*恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将120°化为弧度为(  )
A.$-\frac{2π}{3}$B.$-\frac{5π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若直线2ax-by+2=0(a>b>0)始终平分圆x2+y2+2x-4y+1=0的周长,则$\frac{1}{a}$+$\frac{1}{b}$的最小值是4,此时a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得$\sqrt{{a_m}{a_n}}=32{a_1}$,则$\frac{1}{m}$+$\frac{4}{n}$的最小值为(  )
A.$\frac{2}{3}$B.$\frac{5}{3}$C.$\frac{5}{6}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x-m|+m.
(Ⅰ)若不等式f(x)≤6的解集为{x|-1≤x≤3},求实数m的值;
(Ⅱ)在(Ⅰ)的条件下,求使f(x)≤a-f(-x)有解的实数a的取值范围.

查看答案和解析>>

同步练习册答案