精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)当时,求的单调区间;

(2)当时, 恒成立,求的取值范围;

(3)求证:当时, .

【答案】(1)的单调递减区间为 的单调递增区间为;(2);(3)见解析.

【解析】试题分析】(1)直接对函数求导得,借助导函数值的符号与函数单调性之间的关系求出其单调区间;(2)先将不等式中参数分离分离出来可得: ,再构造函数 ,求导得,借助,推得,从而上单调递减, ,进而求得;(3)先将不等式等价转化为,再构造函数,求导可得,由(2)知时, 恒成立,所以,即恒成立,故上单调递增,所以,因此时,有

解:(1))当时,则,令,所以有

时, 的单调递减区间为 的单调递增区间为.

(2)由,分离参数可得:

,又∵

,则上单调递减,

,∴

的取值范围为.

(3)证明: 等价于

,由(2)知时, 恒成立,

所以

恒成立

上单调递增,

,因此时,有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),f(0)≠0,f(1)=2,当x>0,f(x)>1,且对任意a,b∈R,有f(a+b)=f(a)f(b).
(1)求证:对任意x∈R,都有f(x)>0;
(2)判断f(x)在R上的单调性,并用定义证明;
(3)求不等式f(3﹣2x)>4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)为奇函数,且相邻两对称轴间的距离为.

(1)当时,求的单调递减区间;

(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查了50人,并将调查情况进行整理后制成下表:

(1)规定:年龄在内的为青年人,年龄在内的为中年人,根据以上统计数据填写下面列联表:

(2)能否在犯错误的概率不超过0.025的前提下,认为赞成“车辆限行”与年龄有关?

参考公式和数据: ,其中.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数= x·ex ,若对任意的,都有成立,则实数k的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①若,则“”是“”成立的充分不必要条件;

②若椭圆的两个焦点为,且弦过点,则的周长为16;

③若命题“”与命题“”都是真命题,则命题一定是真命题;

④若命题 ,则

其中为真命题的是__________(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.

(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到理科题的概率;

(2)该考生答对理科题的概率均为,若每题答对得10分,否则得零分,现该生抽到3道理科题,求其所得总分的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数存在两个极值点.

(Ⅰ)求实数a的取值范围;

(Ⅱ)设分别是的两个极值点且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求证:f(x)在(0,+∞)上是单调递增函数;
(2)若f(x)在 上的值域是 ,求a的值.

查看答案和解析>>

同步练习册答案