精英家教网 > 高中数学 > 题目详情
13.如图,等腰梯形ABCD中,AB∥CD,AD⊥BD,矩形ABEF所在的平面和平面ABCD相互垂直. 
(1)求证:AD⊥平面DBE;
(2)若AB=2,AD=AF=1,求三棱锥C-BDE的体积.

分析 (1)要证线与面垂直,需先证明直线AF垂直于平面内的两条相交直线,因为矩形ABCD所在的平面和平面ABEF互相垂直,所以BC垂直于平面ABEF,从而AF垂直于BC,依题意,AF垂直于BF,从而得证.
(2)三棱锥E-BCD与三棱锥C-BDE的体积相等,先计算底面三角形BCD的面积,算三棱锥C-BEF的高,即为BE,最后由三棱锥体积计算公式计算即可.

解答 (1)证明:∵平面ABCD⊥平面ABEF.
平面ABCD∩平面ABEF=AB.
∵矩形ABEF.
∴EB⊥AB.∵EB?平面ABEF.
∴EB⊥平面ABCD                                           (3分)
∵AD?平面ABCD.
∵EB⊥AD,AD⊥BD,BD∩EB=B.
∴AD⊥平面BDE                                            (6分)
(2)∵AD=1,AD⊥BD,AB=2,
∴∠DAB=60°,过点C作CH⊥AB于H,则∠CBH=60°,
∴CH=$\frac{{\sqrt{3}}}{2}$,CD=AB-2HB=1,(9分)
故S△BCD=$\frac{1}{2}$×1×$\frac{{\sqrt{3}}}{2}$=$\frac{{\sqrt{3}}}{4}$,∵EB⊥平面ABCD,
∴三棱锥E-BCD的高为EB=1,∴VE-BCD=$\frac{1}{3}$×S△BCD×BE=$\frac{1}{3}$×$\frac{{\sqrt{3}}}{4}$×1=$\frac{{\sqrt{3}}}{12}$(12分)

点评 本题考查了线面平行的判定,即等体积法求三棱锥的体积,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.北宋欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其扣,徐以杓酌油沥之,自钱孔入,而钱不湿.因曰:‘我亦无他,唯手熟尔.’”可见技能都能透过反复苦练而达至熟能生巧之境的.若铜钱是半径为2cm的圆,中间有边长为0.5cm的正方形孔,你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为(  )
A.$\frac{1}{16π}$B.$\frac{1}{4π}$C.$\frac{1}{4}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{a^x}{{{a^x}+\sqrt{a}}}$(a>0),若x1+x2=1,则f(x1)+f(x2)=1_,并求出$f(\frac{1}{2016})+…f(\frac{2015}{2016})$=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知球的表面积为64π,则它的体积为(  )
A.16πB.$\frac{256}{3}$πC.36πD.$\frac{100}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在正方体..中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正(主)视图与侧(左)视图的面积的比值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系中,定点F(1,0),P是定直线l:x=-1上一动点,过点P作l的垂线与线段PF的垂直平分线相交于点Q,记Q点的轨迹为曲线T,过点E(2,0)作斜率分别为k1,k2的两条直线AB,CD交曲线T于点A,B,C,D,且M,N分别是AB,CD的中点.
(1)求曲线T的方程;
(2)若k1+k2=1,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-$\frac{1}{2}$cos2x,x∈R.
(1)若对于任意x∈[-$\frac{π}{12}$,$\frac{π}{2}$],都有f(x)≥a成立,求a的取值范围;
(2)若先将y=f(x)的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,求函数y=g(x)-$\frac{1}{3}$在区间[-2π,4π]内的所有零点之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC三边a,b,c上的高分别为$\frac{1}{2},\frac{{\sqrt{2}}}{2},1$,则cosA=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,空间四边形OABC中,E,F分别为OA,BC的中点,设$\overrightarrow{OA}$=a,$\overrightarrow{OB}$=b,$\overrightarrow{OC}$=c,试用a,b,c表示$\overrightarrow{EF}$.

查看答案和解析>>

同步练习册答案