分析 (1)要证线与面垂直,需先证明直线AF垂直于平面内的两条相交直线,因为矩形ABCD所在的平面和平面ABEF互相垂直,所以BC垂直于平面ABEF,从而AF垂直于BC,依题意,AF垂直于BF,从而得证.
(2)三棱锥E-BCD与三棱锥C-BDE的体积相等,先计算底面三角形BCD的面积,算三棱锥C-BEF的高,即为BE,最后由三棱锥体积计算公式计算即可.
解答 (1)证明:∵平面ABCD⊥平面ABEF.
平面ABCD∩平面ABEF=AB.
∵矩形ABEF.
∴EB⊥AB.∵EB?平面ABEF.
∴EB⊥平面ABCD (3分)
∵AD?平面ABCD.
∵EB⊥AD,AD⊥BD,BD∩EB=B.
∴AD⊥平面BDE (6分)
(2)∵AD=1,AD⊥BD,AB=2,
∴∠DAB=60°,过点C作CH⊥AB于H,则∠CBH=60°,
∴CH=$\frac{{\sqrt{3}}}{2}$,CD=AB-2HB=1,(9分)
故S△BCD=$\frac{1}{2}$×1×$\frac{{\sqrt{3}}}{2}$=$\frac{{\sqrt{3}}}{4}$,∵EB⊥平面ABCD,
∴三棱锥E-BCD的高为EB=1,∴VE-BCD=$\frac{1}{3}$×S△BCD×BE=$\frac{1}{3}$×$\frac{{\sqrt{3}}}{4}$×1=$\frac{{\sqrt{3}}}{12}$(12分)
点评 本题考查了线面平行的判定,即等体积法求三棱锥的体积,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{16π}$ | B. | $\frac{1}{4π}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com