精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在正方体中,上一点,的中点,平面

(Ⅰ)求证:平面

(Ⅱ)求与平面所成的角

【答案】(Ⅰ)见解析.(Ⅱ).

【解析】

Ⅱ)利用正方体中的棱与面的关系可得CD平面ADD1A1,进一步得到CD⊥AD1,再结合AD1⊥A1D,运用线面垂直的判定得答案;

(2)由已知MN平面A1DC结合(1)的结论可得AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,进一步可得∠D1AD即为AD1与平面ABCD所成的角,则答案可求.

(Ⅰ)由是正方体知,平面平面

.又为正方形,∴.

平面

(细则:先证,进而得出结论的也是6分)

(Ⅱ)∵平面,又由(Ⅰ)知平面,∴

与平面所成的角就是与平面所成的角,

平面,∴即为与平面所成的角,

显然,∴与平面所成的角为.

(细则:对于不同方法,只要正确的按对应步骤给分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为中位数分别为则(

A. xx,mm B. xx,mm

C. xx,mm D. xx,mm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:

(1)ACBD=ADAB;
(2)AC=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在空间四边形ABCD中,点EH分别是边ABAD的中点,点FG分别是边BCCD上的点,且,则下列说法正确的是________.(填写所有正确说法的序号)

EFGH平行; ②EFGH异面;

EFGH的交点M可能在直线AC上,也可能不在直线AC上;

EFGH的交点M一定在直线AC上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)
(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;
(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线 )上一点, 是抛物线的焦点, .

(1)求抛物线的方程;

(2)已知 ,过 的直线 交抛物线 两点,以 为圆心的圆 与直线 相切,试判断圆 与直线 的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果执行右边的程序框图,输入正整数N(N≥2)和实数a1 , a2 , …,an , 输出A,B,则(

A.A+B为a1 , a2 , …,an的和
B. 为a1 , a2 , …,an的算术平均数
C.A和B分别是a1 , a2 , …,an中最大的数和最小的数
D.A和B分别是a1 , a2 , …,an中最小的数和最大的数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面为等腰梯形且底面与侧面垂直 分别为线段的中点 .

1证明: 平面

2与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案