【题目】如图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于A、B两点.
(1)求抛物线的焦点F的坐标及准线的方程;
(2)若a为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos2a为定值,并求此定值.
【答案】(1)(2)8
【解析】
试题(1)根据抛物线的标准方程,可求抛物线的焦点F的坐标及准线l的方程;(2)作AC⊥l,BD⊥l,垂足为C,D,求出|FA|,|FB|,即可得到结论
试题解析:(1)解:设抛物线的标准方程为,则,从而因此焦点的坐标为(2,0).又准线方程的一般式为.从而所求准线l的方程为.
(2)解法一:如图(21)图作AC⊥l,BD⊥l,垂足为C、D,则由抛物线的定义知|FA|=|AC|,|FB|=|BD|.
记A的横坐标别为xx,则|FA|=|AC|=解得,
类似地有,解得.
记直线m与AB的交点为E,则
,
所以.故.
解法二:设,,直线AB的斜率为,则直线方程为.
将此式代入,得,故.
记直线m与AB的交点为,则
,,故直线m的方程为.
令y=0,得P的横坐标故.
从而为定值.
科目:高中数学 来源: 题型:
【题目】已知数列和满足:,,且对一切,均有.
(1)求证:数列为等差数列,并求数列的通项公式;
(2)求数列的前项和;
(3)设,记数列的前项和为,求正整数,使得对任意,均有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列首项和公差都是,记的前n项和为,等比数列各项均为正数,公比为q,记的前n项和为:
(1)写出构成的集合A;
(2)若将中的整数项按从小到大的顺序构成数列,求的一个通项公式;
(3)若q为正整数,问是否存在大于1的正整数k,使得同时为(1)中集合A的元素?若存在,写出所有符合条件的的通项公式,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列,满足:对任意正整数,都有,,成等差数列,,,成等比数列,且,.
(Ⅰ)求证:数列是等差数列;
(Ⅱ)求数列,的通项公式;
(Ⅲ)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.
(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线与有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:只要,必有,则称具有性质.
(1)若具有性质,且,求;
(2)若无穷数列是等差数列,无穷数列是等比数列,,,.判断是否具有性质,并说明理由;
(3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、为椭圆()和双曲线的公共顶点,、分为双曲线和椭圆上不同于、的动点,且满足,设直线、、、的斜率分别为、、、.
(1)求证:点、、三点共线;
(2)求的值;
(3)若、分别为椭圆和双曲线的右焦点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当前,以“立德树人”为目标的课程改革正在有序推进. 高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施. 某地区2018年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分. 某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到右边频率分布直方图,且规定计分规则如下表:
(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于33分的概率;
(2)若该校初三年级所有学生的跳绳个数服从正态分布,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差 (各组数据用中点值代替). 根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:
(ⅰ)预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)
(ⅱ)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望. 附:若随机变量服从正态分布,则,,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com