【题目】已知函数 (m,n∈R)在x=1处取得极值2.
(1)求f(x)的解析式;
(2)k为何值时,方程f(x)-k=0只有1个根
(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围
【答案】(1);(2)k=或0;(3).
【解析】试题分析:(1)先由已知函数求其导数,再根据函数 在 处取得极值 ,列出关于 的方程即可求得函数的解析式;(2)利用导数研究函数 的单调性,数形结合可得方程f(x)-k=0只有1个根时的 值;(3)函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),等价于当时, ,求出,结合换元法,分离参数后,利用基本不等式求解.
试题解析:(1)因为,所以.
又f(x)在处取得极值2,所以,即解得,
经检验满足题意,所以 .
(2),令,得.
当变化时, 的变化情况如下表:
所以f(x)在处取得极小值,在处取得极大值,
又时, ,所以的最小值为,
如图
所以k=或0时,方程有一个根.
(也可直接用方程来判断根的情况解决)
(3)由(2)得的最小值为,
因为对任意的,总存在,使得,
所以当时, 有解,
即在上有解.
令,则,所以.
所以当时, ;
的取值范围为.
【方法点晴】本题主要考查不等式有解问题、方程根的个数问题以及函数极值问题,属于难题.不等式有解问题不能只局限于判别式是否为正,不但可以利用一元二次方程根的分布解题,还可以转化为有解(即可)或转化为有解(即可),本题(3)就用了这种方法.
科目:高中数学 来源: 题型:
【题目】如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是( )
A. 2017年第一季度总量和增速由高到低排位均居同一位的省只有1个
B. 与去年同期相比,2017年第一季度五个省的总量均实现了增长
C. 去年同期河南省的总量不超过4000亿元
D. 2017年第一季度增速由高到低排位第5的是浙江省
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点,直线.
(1)求与圆相切,且与直线垂直的直线方程;
(2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标.
【答案】(1);(2)答案见解析.
【解析】试题分析:
(1)设所求直线方程为,利用圆心到直线的距离等于半径可得关于b的方程,解方程可得,则所求直线方程为
(2)方法1:假设存在这样的点,由题意可得,则,然后证明为常数为即可.
方法2:假设存在这样的点,使得为常数,则,据此得到关于的方程组,求解方程组可得存在点对于圆上任一点,都有为常数.
试题解析:
(1)设所求直线方程为,即,
∵直线与圆相切,∴,得,
∴所求直线方程为
(2)方法1:假设存在这样的点,
当为圆与轴左交点时,;
当为圆与轴右交点时,,
依题意,,解得,(舍去),或.
下面证明点对于圆上任一点,都有为一常数.
设,则,
∴ ,
从而为常数.
方法2:假设存在这样的点,使得为常数,则,
∴,将代入得,
,即
对恒成立,
∴,解得或(舍去),
所以存在点对于圆上任一点,都有为常数.
点睛:求定值问题常见的方法有两种:
(1)从特殊入手,求出定值,再证明这个值与变量无关.
(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
【题型】解答题
【结束】
22
【题目】已知函数的导函数为,其中为常数.
(1)当时,求的最大值,并推断方程是否有实数解;
(2)若在区间上的最大值为-3,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某机械厂要将长,宽的长方形铁皮进行裁剪.已知点为的中点,点在边上,裁剪时先将四边形沿直线翻折到处(点分别落在直线下方点处,交边于点),再沿直线裁剪.
(1)当时,试判断四边形的形状,并求其面积;
(2)若使裁剪得到的四边形面积最大,请给出裁剪方案,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2x﹣a,g(x)=x+2.
(1)当a=1时,求不等式f(x)+f(﹣x)≤g(x)的解集;
(2)求证: 中至少有一个不小于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | 30 | ||
总计 | 60 |
(Ⅱ)现已知A,B,C三人获得优秀的概率分别为 ,设随机变量X表示A,B,C三人中获得优秀的人数,求X的分布列及期望E(X).
附: ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: + =1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=﹣x+3与椭圆E有且只有一个公共点T.
(Ⅰ)求椭圆E的方程及点T的坐标;
(Ⅱ)设O是坐标原点,直线l′平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA||PB|,并求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2是双曲线C1: ﹣ =1(a>0,b>0)的左、右焦点,且F2是抛物线C2:y2=2px(p>0)的焦点,P是双曲线C1与抛物线C2在第一象限内的交点,线段PF2的中点为M,且|OM|= |F1F2|,其中O为坐标原点,则双曲线C1的离心率是( )
A.2+
B.1+
C.2+
D.1+
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com