精英家教网 > 高中数学 > 题目详情
11.已知随机变量X服从正态分布N(3,1),且P(X>4)=0.1587,则P(2≤X≤4)等于(  )
A.0.3413B.0.1585C.0.8413D.0.6826

分析 根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P(2≤X≤4).

解答 解:∵随机变量X服从正态分布N(3,1),
∴正态曲线的对称轴是x=3,
∵P(X>4)=0.1587,
∴P(2≤X≤4)=1-2P(X>4)=1-0.3174=0.6826.
故选:D

点评 本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知全集为U={x|x≤4},A={x|-2<x<3},B={x|-3<x<3},求∁UA∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,三棱锥A-BCD中,AB=BC=CD=DA=BD=AC=2a,E,F,G,H分别是AB,BC,CD,DA的中点.
(1)证明四边形EFGH是四边形
(2)求多面体BD-EFGH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知圆O:x2+y2=4和点P(-1,1),过点P的直线l交圆O于A、B两点.
(1)若|AB|=2$\sqrt{3}$,求直线l的方程;
(2)设弦AB的中点为M,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.x,y,z∈R,则($\frac{{x}^{2}-2xy-4xz+8yz}{{y}^{2}-4yz+4{z}^{2}}$)min=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设△ABC的BC边的垂直平分线与∠BAC的平分线相交于D,求证:A、B、C、D四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分别为AB、BC的中点.点P在以A为圆心,AD为半径的圆弧$\widehat{DE}$上变动(如图所示),若$\overrightarrow{AP}$=λ$\overrightarrow{ED}$+μ$\overrightarrow{AF}$,其中λ,μ∈R.则2λ-μ的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若$\underset{lim}{n→∞}$g(x)=0,且在x0的某去心邻域内g(x)≠0,$\underset{lim}{n→∞}$$\frac{f(x)}{g(x)}$=A,则$\underset{lim}{n→∞}$f(x)必等于0,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若f(x)=|2x-1|,求函数f(x)在x∈[-1,5]上的值域.

查看答案和解析>>

同步练习册答案