精英家教网 > 高中数学 > 题目详情

【题目】某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李,小王设计的底座形状分别为 ,经测量米, 米, 米,

(I)求的长度;

(Ⅱ)若环境标志的底座每平方米造价为元,不考虑其他因素,小李,小王谁的设计建造费用最低(请说明理由),最低造价为多少?(

【答案】(I)米.(Ⅱ)86600(元).

【解析】试题分析:由实际问题转化为数学问题,即为解三角形,首先利用两三角形中的余弦定理得到关于AB边的等式关系,解方程得到边长,进而得到角D的大小,利用三角形面积公式分解计算出两三角形的面积,得到取得最小造价的方案

试题解析:()在ABC中,由余弦定理得2

中,由余弦定理得4

解得6

)小李设计使建造费用最低, 7

理由为:

故选择的形状建造环境标志费用最低. 9

边三角形, 10

12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, 中点,将沿折起,使得

)求证:平面平面

)若的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),图中圆弧所在圆的圆心为点C,半径为且点P在图中阴影部分(包括边界)运动.,其中,则 的取值范围是(

A. [2,3+] B. [2,3+] C. [3-, 3+] D. [3-, 3+]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为对南康区和于都县两区县某次联考成绩进行分析,随机抽查了两地一共10000名考生的成绩,根据所得数据画了如下的样本频率分布直方图.

(1)求成绩在的频率;

(2)根据频率分布直方图算出样本数据平均数;

(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这10000人中用分层抽样方法抽出20人作进一步分析,则成绩在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,准线为,三个点 中恰有两个点在上.

(1)求抛物线的标准方程;

(2)过的直线交 两点,点上任意一点,证明:直线 的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆Cy轴相切于点T(0,2),与x轴的正半轴交于两点 (在点的左侧),且.

(1)求圆C的方程;(2)过点任作一直线与圆O 相交于两点,连接,求证: 定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:min)的频率分布直方图,若将日均课外阅读时间不低于60 min的学生称为“书虫”,低于60 min的学生称为“懒虫”,

(1)求x的值并估计全校3 000名学生中“书虫”大概有多少名学生?(将频率视为概率)

(2)根据已知条件完成下面2×2的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“书虫”与性别有关:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)和利润的影响,对近五年该农产品的年产量和价格统计如下表:

1

2

3

4

5

7.0

6.5

5.5

3.8

2.2

已知具有线性相关关系.

(Ⅰ)求关于的线性回归方程

(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润取到最大值?(保留一位小数)

参考数据及公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点, 且为坐标原点)?若存在,写出该圆的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案