【题目】F1 , F2分别是双曲线x2﹣ =1(b>0)的左、右焦点,过F2的直线l与双曲线的左右两支分别交于A,B两点,若△ABF1是等边三角形,则该双曲线的虚轴长为( )
A.2
B.2
C.
D.4
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设AP=1,AD= ,三棱锥P﹣ABD的体积V= ,求二面角D﹣AE﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中.
(1)根据散点图判断与哪一个适宜作为年销售量关于年宣传费的回归类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程;
(3)已知这种产品的利润与的的关系为.根据(2)的结果回答下列问题:
(ⅰ)年宣传费时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,其回归直线的的斜率和截距的最小二乘估计为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在中,斜边,将沿直线旋转得到,设二面角的大小为.
(1)取的中点,过点的平面与分别交于点,当平面平面时,求的长(2)当时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确的是( )
A.“x<﹣1”是“x2﹣x﹣2>0”的必要不充分条件
B.“P且Q”为假,则P假且 Q假
C.命题“ax2﹣2ax+3>0恒成立”是真命题,则实数a的取值范围是0≤a<3
D.命题“若x2﹣3x+2=0,则x=2”的否命题为“若x2﹣3x+2=0,则x≠2”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1的左、右焦点分别为F1 , F2 , 直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1于点P,线段PF2的垂直平分线与l1的交点的轨迹为曲线C2 , 若点Q是C2上任意的一点,定点A(4,3),B(1,0),则|QA|+|QB|的最小值为( )
A.6
B.3
C.4
D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,下列说法正确的是( )
A.f(x)的图象关于直线x=﹣ 对称
B.函数f(x)在[﹣ ,0]上单调递增
C.f(x)的图象关于点(﹣ ,0)对称
D.将函数y=2sin(2x﹣ )的图象向左平移 个单位得到f(x)的图象
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com