精英家教网 > 高中数学 > 题目详情

已知动点的距离比它到轴的距离多一个单位.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)过点作曲线的切线,求切线的方程,并求出与曲线轴所围成图形的面积

(Ⅰ)(Ⅱ)切线的方程为:,所求的图形的面积为

解析试题分析:(Ⅰ)设动点M的坐标为
依题意得:动点M到点的距离与它到直线的距离相等,
由抛物线定义知:M的轨迹C是以为焦点,直线为准线的抛物线,
其方程为:.                                                             ……6分
(Ⅱ)∵曲线C的方程可写成:
注意到点在曲线C上,过点N的切线斜率为
故所求的切线的方程为:.                                   ……9分
由定积分的几何意义,所求的图形的面积
.                                    ……13分
考点:本小题注意考查抛物线标准方程的求解,导数的运算,切线的求解和定积分的计算.
点评:解决轨迹方程问题时,经常先根据定义求出曲线类型再求解,因此圆、椭圆、双曲线、抛物线的定义尤其重要,要熟练掌握,灵活应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知直线与圆的交点为A、B,
(1)求弦长AB;
(2)求过A、B两点且面积最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
抛物线的焦点与双曲线的右焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知点是抛物线上相异两点,且满足
(Ⅰ)若的中垂线经过点,求直线的方程;
(Ⅱ)若的中垂线交轴于点,求的面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知一条曲线上的点到定点的距离是到定点距离的二倍,求这条曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线轴上的截距m的取值范围;
(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左、右焦点。
(1)若是第一象限内该椭圆上的一点,,求点P的坐标;
(2)设过定点M(0,2)的直线与椭圆交于不同的两点A、B,且为锐角(其中为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,它的准线经过双曲线的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是
(1)求抛物线的方程及其焦点的坐标;
(2)求双曲线的方程及其离心率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且过点(),
(1)求椭圆的方程;
(2)设直线与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线的方程.

查看答案和解析>>

同步练习册答案