精英家教网 > 高中数学 > 题目详情

l为定直线,F为不在l上的定点,以F为焦点,l为准线的双曲线有


  1. A.
    1个
  2. B.
    2个
  3. C.
    1个或2个
  4. D.
    无穷多个
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆O:x2+y2=4,A(-1,0),B(1,0),直线l与圆O切于点S(l不垂直于x轴),抛物线过A、B两点且以l为准线,以F为焦点.
(1)当点S在圆周上运动时,求证:|FA|+|FB|为定值,并求出点F的轨迹C方程;
(2)曲线C上有两个动点M,N,中点D在直线y=l上,若直线l′经过点D,且在l′上任取一点P(不同于D点),都存在实数λ,使得
DP
=λ(
MP
|
MP
|
+
NP
|
NP
|
)
,证明:直线l′必过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆O:x2+y2=4,A(-1,0),B(1,0),直线l与圆O切于点S(l不垂直于x轴),抛物线过A、B两点且以l为准线,以F为焦点.
(1)当点S在圆周上运动时,求证:|FA|+|FB|为定值,并求出点F的轨迹C方程;
(2)曲线C上有两个动点M,N,中点D在直线y=l上,若直线l′经过点D,且在l′上任取一点P(不同于D点),都存在实数λ,使得数学公式,证明:直线l′必过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:2011年浙江省宁波市海曙区效实中学高考数学模拟试卷(理科)(解析版) 题型:解答题

已知圆O:x2+y2=4,A(-1,0),B(1,0),直线l与圆O切于点S(l不垂直于x轴),抛物线过A、B两点且以l为准线,以F为焦点.
(1)当点S在圆周上运动时,求证:|FA|+|FB|为定值,并求出点F的轨迹C方程;
(2)曲线C上有两个动点M,N,中点D在直线y=l上,若直线l′经过点D,且在l′上任取一点P(不同于D点),都存在实数λ,使得,证明:直线l′必过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

l:x=1为定直线,F为不在l上的定点,以F为焦点,l为相应的准线的椭圆可画


  1. A.
    1个
  2. B.
    2个
  3. C.
    1个或2个
  4. D.
    无穷多个

查看答案和解析>>

同步练习册答案