分析 (Ⅰ)推导出ED∥BC,从而ED∥平面BCH,进而ED∥HI,由此能证明IH∥BC.
(Ⅱ) 以D为原点为,DE为x轴,DC为y轴,DA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-GI-C的余弦值.
解答 证明:(Ⅰ)因为D、E分别是边AC和AB的中点,所以ED∥BC,
因为BC?平面BCH,ED?平面BCH,
所以ED∥平面BCH,
因为ED?平面BCH,ED?平面AED,平面BCH∩平面AED=HI,
所以ED∥HI,
又因为ED∥BC,所以IH∥BC.
解:(Ⅱ) 如图,以D为原点为,DE为x轴,DC为y轴,DA为z轴,建立空间直角坐标系,
由题意得D(0,0,0),E(2,0,0),A(0,0,2),F(3,1,0),C(0,2,0),H(0,0,1),
$\overrightarrow{EA}=(-2,0,2)$,$\overrightarrow{EF}=(1,1,0)$,$\overrightarrow{CH}=(0,-2,1)$,$\overrightarrow{HI}=\frac{1}{2}\overrightarrow{DE}=(1,0,0)$,
设平面AGI的一个法向量为$\overrightarrow{n_1}=({x_1},{y_1},{z_1})$,
则$\left\{\begin{array}{l}\overrightarrow{EA}•\overrightarrow{n_1}=0\\ \overrightarrow{EB}•\overrightarrow{n_1}=0\end{array}\right.$,故$\left\{\begin{array}{l}-\overrightarrow{x_1}+\overrightarrow{z_1}=0\\ \overrightarrow{x_1}+\overrightarrow{y_1}=0\end{array}\right.$,令$\overrightarrow{z_1}=1$,解得$\overrightarrow{x_1}=1$,$\overrightarrow{y_1}=-1$,则$\overrightarrow{n_1}=(1,-1,1)$设,
平面CHI的一个法向量为$\overrightarrow{n_2}=({x_2},{y_2},{z_2})$,
则$\left\{\begin{array}{l}\overrightarrow{CH}•\overrightarrow{n_2}=0\\ \overrightarrow{HI}•\overrightarrow{n_2}=0\end{array}\right.$,故$\left\{\begin{array}{l}-2\overrightarrow{y_1}+\overrightarrow{z_2}=0\\ \overrightarrow{x_2}=0\end{array}\right.$,令$\overrightarrow{z_2}=-2$,解得$\overrightarrow{y_1}=-1$,则$\overrightarrow{n_2}=(0,-1,-2)$,
$cos<\overrightarrow{n_1},\overrightarrow{n_2}>=\frac{{|{1-2}|}}{{\sqrt{3}•\sqrt{5}}}=\frac{{\sqrt{15}}}{15}$,
所以二面角A-GI-C的余弦值为$\frac{{\sqrt{15}}}{15}$.
点评 本题考查直线与直线平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com