精英家教网 > 高中数学 > 题目详情
如图所示,已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角BD折起,得到三棱锥A-BCD.
(1)求证:平面AOC⊥平面BCD;
(2)若三棱锥A-BCD的体积为,求AC的长.

【答案】分析:(1)直接根据可得由正方形的性质可得AO⊥BD以及BD⊥CO,根据线面垂直的判定定理,可得AO⊥平面BCD,进而得到结论.
(2)先根据三棱锥的体积求出棱锥的高,再分二面角为钝角和锐角两种情况分别求出AC的长即可.
解答:(本小题满分14分)
解:(1)证明:因为ABCD是正方形,
所以BD⊥AO,BD⊥CO.…(1分)
在折叠后的△ABD和△BCD中,
仍有BD⊥AO,BD⊥CO.…(2分)
因为AO∩CO=O,所以BD⊥平面AOC.…(3分)
因为BD?平面BCD,
所以平面AOC⊥平面BCD.…(4分)
(2)解:设三棱锥A-BCD的高为h,
由于三棱锥A-BCD的体积为
所以.…(5分)
因为,所以.…(6分)
以下分两种情形求AC的长:
①当∠AOC为钝角时,如图,过点A作CO的垂线交CO的延长线于点H,
由(1)知BD⊥平面AOC,所以BD⊥AH.
又CO⊥AH,且CO∩BD=O,所以AH⊥平面BCD.
所以AH为三棱锥A-BCD的高,即.…(7分)
在Rt△AOH中,因为
所以=.…(8分)
在Rt△ACH中,因为
.…(9分)
所以.…(10分)
②当∠AOC为锐角时,如图,过点A作CO的垂线交CO于点H,
由(1)知BD⊥平面AOC,所以BD⊥AH.
又CO⊥AH,且CO∩BD=O,所以AH⊥平面BCD.
所以AH为三棱锥A-BCD的高,即.…(11分)
在Rt△AOH中,因为
所以=.…(12分)
在Rt△ACH中,因为
.…(13分)
所以
综上可知,AC的长为.…(14分)
点评:本题主要考察面面垂直的判定以及线段长度的计算.一般在证明面面垂直时,常转化为证线线垂直,得线面垂直,进而得到结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1
,M是线段EF的中点.
(1)证明:CM∥平面DFB
(2)求异面直线AM与DE所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•广州模拟)如图所示,已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角BD折起,得到三棱锥A-BCD.
(1)求证:平面AOC⊥平面BCD;
(2)若三棱锥A-BCD的体积为
6
3
,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•丰台区二模)如图所示,已知正方形ABCD的边长为1,以A为圆心,AD长为半径画弧,交BA的延长线于P1,然后以B为圆心,BP1长为半径画弧,交CB的延长线于P2,再以C为圆心,CP2长为半径画弧,交DC的延长线于P3,再以D为圆心,DP3长为半径画弧,交AD的延长线于P4,再以A为圆心,AP4长为半径画弧,…,如此继续下去,画出的第8道弧的半径是
8
8
,画出第n道弧时,这n道弧的弧长之和为
n(n+1)π
4
n(n+1)π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:

(1)AM∥平面BDE;

(2)AM⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源:2014届黑龙江省哈尔滨市高二下期中考试文数学卷(解析版) 题型:解答题

如图所示,已知正方形和矩形所在的平面互相垂直, 是线段的中点。

(1)证明:∥平面

(2)求异面直线所成的角的余弦值。

 

查看答案和解析>>

同步练习册答案