精英家教网 > 高中数学 > 题目详情
10.如图,正方体ABCD-A1B1C1D1中,E是棱BC的中点,F是侧面BCC1B1上的动点,且A1F∥平面AD1E,则直线A1F与平面BCC1B1所成的角的正切值t构成的集合是(  )
A.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤$\frac{{2\sqrt{3}}}{3}}\right.}$}B.{t|{2≤t≤2$\sqrt{3}}$}C.{t|${\frac{{2\sqrt{5}}}{5}$≤t≤2$\sqrt{3}$}D.{{t|{2≤t≤2$\sqrt{2}}$}

分析 设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点.分别取B1B、B1C1的中点M、N,连接AM、MN、AN,可证出平面A1MN∥平面D1AE,从而得到A1F是平面A1MN内的直线.由此将点F在线段MN上运动并加以观察,即可得到A1F与平面BCC1B1所成角取最大值、最小值的位置,由此不难得到A1F与平面BCC1B1所成角的正切取值范围.

解答 解:设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点
分别取B1B、B1C1的中点M、N,连接AM、MN、AN,则
∵A1M∥D1E,A1M?平面D1AE,D1E?平面D1AE,
∴A1M∥平面D1AE.同理可得MN∥平面D1AE,
∵A1M、MN是平面A1MN内的相交直线
∴平面A1MN∥平面D1AE,
由此结合A1F∥平面D1AE,可得直线A1F?平面A1MN,即点F是线段MN上上的动点.
设直线A1F与平面BCC1B1所成角为θ
运动点F并加以观察,可得
当F与M(或N)重合时,A1F与平面BCC1B1所成角等于∠A1MB1,此时所成角θ达到最小值,满足tanθ=$\frac{{A}_{1}{B}_{1}}{{B}_{1}M}$=2;
当F与MN中点重合时,A1F与平面BCC1B1所成角达到最大值,满足tanθ=$\frac{{A}_{1}{B}_{1}}{\frac{\sqrt{2}}{2}{B}_{1}M}$=2$\sqrt{2}$
∴A1F与平面BCC1B1所成角的正切取值范围为[2,2$\sqrt{2}$].
故选:D.

点评 本题给出正方体中侧面BCC1B1内动点F满足A1F∥平面D1AE,求A1F与平面BCC1B1所成角的正切取值范围,着重考查了正方体的性质、直线与平面所成角、空间面面平行与线面平行的位置关系判定等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知命题p:(x-3)(x+1)<0,命题q:$\frac{x-2}{x-4}$<0,命题r:a<x<2a,其中a>0.若p∧q是r的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.甲、乙、丙、丁和戊5名学生进行劳动技术比赛,决出第一名到第五名的名次.甲乙两名参赛者去询问成绩,回答者对甲说“很遗憾,你没有得到冠军”;对乙说“你当然不会是最差的”,从上述回答分析,5人的名次排列可能有78种不同情况.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式x2+8x<20的解集是(-10,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,将正整数排成一个三角形数阵:

按照以上排列的规律,第20行从左向右的第2个数为192.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤a}\\{x≥1}\end{array}$,其中a=$\int_0^3$(x2-1)dx,则实数$\frac{y}{x+1}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{2}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一个三角形数表的前5行如图,第n行的第二个数为an(n≥2,n∈N*).

(1)求a6
(2)归纳出an+1与an的关系式(不用证明),并求出{an}(n≥2)的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a,b,c∈R,且a>b,则下列命题一定正确的是(  )
A.ac>bcB.ac2≥bc2C.$\frac{1}{a}$<$\frac{1}{b}$D.$\frac{a}{b}$>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是由一些小正方体摞成的,第(1)堆有1个,第(2)堆有4个,第(3)堆有10个…,则第n堆有$\frac{n(n+1)(n+2)}{6}$小正方体.

查看答案和解析>>

同步练习册答案