精英家教网 > 高中数学 > 题目详情

已知函数
(1)讨论的奇偶性;
(2)判断上的单调性并用定义证明。

(1)不具备奇偶性
(2)上单调递增

解析试题分析:解:(1)函数的定义域为关于原点对称。    1分
(1)方法1:         2分
,则,无解,不是偶函数     4分
,则,显然时,为奇函数
综上,当时,为奇函数;当时,不具备奇偶性  6分
方法2:函数的定义域为关于原点对称。    1分
时,
为奇函数:       4分
时,,显然
不具备奇偶性。     6分
(2)函数上单调递增;   7分
证明:任取,则
    9分

从而,故,  11分
上单调递增。    12分
考点:函数的奇偶性和单调性
点评:解决的关键是对于函数奇偶性和单调性概念的准确判定和运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,(1)分别求;(2)然后归纳猜想一般性结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知,求证:;
(2)已知>0(i=1,2,3,…,3n),求证:
+++…+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调区间;
(2)若对于任意的,有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若为定义域上的单调函数,求实数m的取值范围;
(2)当m=-1时,求函数的最大值;
(3)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.

(1)证明函数是偶函数;
(2)在如图所示的平面直角坐标系中作出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若曲线在点处的切线与直线垂直,求实数的值.
(2)若,求的最小值
(3)在(Ⅱ)上求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是函数的两个零点,函数的最小值为,记
(ⅰ)试探求之间的等量关系(不含);
(ⅱ)当且仅当在什么范围内,函数存在最小值?
(ⅲ)若,试确定的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数上是偶函数,其图象关于直线对称,且在区间上是单调函数,求的值.

查看答案和解析>>

同步练习册答案