A. | -2 | B. | -1 | C. | 0 | D. | 1 |
分析 根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.
解答 解:∵f(x+2)为奇函数,
∴f(-x+2)=-f(x-2),
∵f(x)是偶函数,
∴f(-x+2)=f(x-2)=-f(x-2),
即f(x+4)=-f(x),
f(x+8)=f(x+4+4)=-f(x+4)=f(x),
则f(9)=f(1)=1,
f(10)=f(2),
当x=0时,由f(-x+2)=-f(x-2),
得f(2)=-f(-2)=-f(2),
即2f(2)=0,
则f(2)=0,
∴f(9)+f(10)=0+1=1,
故选:D.
点评 本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
喜欢数学 | 不喜欢数学 | 合计 | |
男 | 13 | 10 | 23 |
女 | 7 | 20 | 27 |
合计 | 20 | 30 | 50 |
A. | 0 | B. | 95% | C. | 99% | D. | 100% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
月收入(元) | [1000,2000) | [2000,3000) | [3000,4000) | [4000,5000) | [5000,6000) | [6000,7000) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
反对人数 | 4 | 8 | 12 | 5 | 2 | 1 |
月收入不低于5000元的人数 | 月收入低于5000元的人数 | 总计 | |
反对 | |||
赞成 | |||
总计 |
P(k2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com