精英家教网 > 高中数学 > 题目详情

在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.

   (1)证明:D1E⊥A1D;

   (2)当E为AB的中点时,求点E到面ACD1的距离;

   (3)AE等于何值时,二面角D1—EC—D的大小为.

 

:(1)证明:∵AE⊥平面AA1DD1A1D⊥AD1,∴A1D⊥D1E.

(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=AD1=

(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,

  ∴∠DHD1为二面角D1—EC—D的平面角.

AE=x,则BE=2-x

解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)

(1)

(2)因为E为AB的中点,则E(1,1,0),从而

,设平面ACD1的法向量为,则

也即,得,从而,所以点E到平面AD1C的距离为


解析:

本题涉及立体几何线面关系的有关知识, 本题实质上求解角度和距离,在求此类问题中,要将这些量处于三角形中,最好是直角三角形,这样有利于问题的解决,此外用向量也是一种比较好的方法。点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求解角度和距离,在求此类问题中,尽量要将这些量处于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较好写出来.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,则AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)在长方体ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)顶点D'到平面B'AC的距离;
(2)二面角B-AC-B'的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案