精英家教网 > 高中数学 > 题目详情
已知,函数.
(1)求的极值;
(2)若上为单调递增函数,求的取值范围;
(3)设,若在是自然对数的底数)上至少存在一个,使得成立,求的取值范围。
(1) 无极大值(2)(3)

试题分析:(1)由题意,
∴当时,;当时,
所以,上是减函数,在上是增函数,
 无极大值.                                                    …4分
(2)
由于内为单调增函数,所以上恒成立,
上恒成立,故,所以的取值范围是.…………………9分
(3)构造函数
时,由得,,所以在上不存在一个,使得
时,
因为,所以
所以上恒成立,
上单调递增,
所以要在上存在一个,使得,必须且只需
解得,故的取值范围是.                                       …14分
另法:(Ⅲ)当时,
时,由,得
,则
所以上递减,
综上,要在上存在一个,使得,必须且只需
点评:纵观历年高考试题,利用导数讨论函数单调区间是函数考查的主要形式,是高考热点,是解答题中的必考题目,在复习中必须加强研究,进行专题训练,熟练掌握利用导数判断函数单调区间的方法,总结函数单调性应用的题型、解法,并通过加大训练强度提高解题能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
是定义在上的奇函数,函数的图象关于轴对称,且当时,
(I)求函数的解析式;
(II)若对于区间上任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(I)若曲线与曲线在它们的交点处具有公共切线,求的值;
(II)当时,若函数在区间内恰有两个零点,求的取值范围;
(III)当时,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

满足仅在点处取得最小值,则的取值范围是(   )
A.(-1,2)B.(-2,4) C.(-4,0]D.(-4,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
若函数时取得极值,且当时,恒成立.
(1)求实数的值;
(2)求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数f(x)=x3-ax2-3x.
(1)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数上是增函数,在上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数的取值范围;
(3)是否存在实数,使得方程在区间上恰有两个相异实数根,若存在,求出的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.     (Ⅲ)(理科)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数可导,的图象如图1所示,则导函数的图像可能为(  )

查看答案和解析>>

同步练习册答案