【题目】设点为抛物线外一点,过点作抛物线的两条切线,,切点分别为,.
(Ⅰ)若点为,求直线的方程;
(Ⅱ)若点为圆上的点,记两切线,的斜率分别为,,求的取值范围.
【答案】(Ⅰ):.(Ⅱ)
【解析】
(Ⅰ)可设直线方程为,直线方程为,联立直线方程和抛物线方程并消元得到关于的方程,利用判别式为零得到的坐标后可得的直线方程.
(Ⅱ)设,则直线方程为,直线方程为.联立直线方程和抛物线方程并消元得到关于的方程,利用判别式为零得到满足的一元二次方程,利用韦达定理得到与的关系,利用得到与的函数关系后得到的取值范围.
(Ⅰ)设直线方程为,直线方程为.
由可得.
因为与抛物线相切,所以,取,则,.
即. 同理可得.所以:.
(Ⅱ)设,则直线方程为,
直线方程为.
由可得.
因为直线与抛物线相切,所以 .
同理可得,所以,时方程的两根.
所以,. 则 .
又因为,则,
所以
.
科目:高中数学 来源: 题型:
【题目】已知的三个顶点落在半径为的球的表面上,三角形有一个角为且其对边长为3,球心到所在的平面的距离恰好等于半径的一半,点为球面上任意一点,则三棱锥的体积的最大值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
如图,在四面体中,点分别是棱的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:四边形为矩形;
(Ⅲ)是否存在点,到四面体六条棱的中点 的距离相等?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水域受到污染,水务部门决定往水中投放一种药剂来净化水质,已知每次投放质量为的药剂后,经过()天,该药剂在水中释放的浓度(毫克升)为,其中,当药剂在水中释放浓度不低于(毫克升)时称为有效净化,当药剂在水中释放的浓度不低于(毫克升)且不高于(毫克升)时称为最佳净化.
(1)如果投放的药剂质量为,那么该水域达到有效净化一共可持续几天?
(2)如果投放的药剂质量为,为了使该水域天(从投放药剂算起,包括第天)之内都达到最佳净化,确定应该投放的药剂质量的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com