精英家教网 > 高中数学 > 题目详情
3.若i是虚数单位,
(1)已知复数Z=$\frac{5{m}^{2}}{1-2i}$-(1+5i)m-3(2+i)是纯虚数,求实数m的值.
(2)如不等式m2-(m2-3m)i<(m2-4m+3)i+10成立,求实数m的值.

分析 (1)利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求解;
(2)由等式两边的虚部为0,实部小于实部联立不等式组求解.

解答 解:(1)Z=$\frac{5{m}^{2}}{1-2i}$-(1+5i)m-3(2+i)=$\frac{5{m}^{2}(1+2i)}{(1-2i)(1+2i)}-(1+5i)-3(2+i)$
=(m2-m-6)+(2m2-5m-3)i,
∵Z是纯虚数,∴满足$\left\{\begin{array}{l}{{m}^{2}-m-6=0}\\{2{m}^{2}-5m-3≠0}\end{array}\right.$,解得m=-2;
(2)由题意得:$\left\{\begin{array}{l}{{m}^{2}-3m=0}\\{{m}^{2}-4m+3=0}\\{{m}^{2}<10}\end{array}\right.$,解得m=3.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若等差数列{an}的前7项和为48,前14项和为72,则它的前21项和为(  )
A.96B.72C.60D.48

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.${∫}_{0}^{2π}$|sinx|dx等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}中,a1=1,an+1=$\frac{a_n}{{{a_n}+3}}(n∈{N^*})$,则求{an}的通项公式an=$\frac{2}{{{3^n}-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)在闭区间[-1,2]上的图象如图所示,则此函数的解析式为y=$\left\{\begin{array}{l}{x+1,-1≤x<0}\\{-\frac{1}{2}x,0≤x≤2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题p:?x∈N,x2≥x,则该命题的否定是?x∈N,x2<x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)$\root{4}{{(3-π{)^4}}}$+(0.008)${\;}^{\frac{1}{3}}$-(0.25)${\;}^{\frac{1}{2}}$×($\frac{1}{{\sqrt{2}}}$)-4
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2009)0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设角α的终边经过点P(sin2,cos2),则$\sqrt{2(1-sinα)}$的值等于(  )
A.sin1B.cos1C.2sin1D.2cos1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知直线C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),圆C2:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)当α=$\frac{π}{3}$时,求C1被C2截得的线段的长;
(Ⅱ)过坐标原点O作C1的垂线,垂足为A,当α变化时,求A点轨迹的极坐标方程.

查看答案和解析>>

同步练习册答案