精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的长轴长是短轴长的两倍,焦距为

1)求椭圆的标准方程;

2)不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,问:直线是否定向的,请说明理由.

【答案】1;(2)不定向,理由见解析.

【解析】

1)由椭圆的长轴长是短轴长的两倍,焦距为,列出方程组能求出椭圆的标准方程;

2)由题意设直线的方程为,联立直线与椭圆的标准方程,由此利用根的判别式、韦达定理、等比数列、椭圆性质,结合已知条件能求出直线的方向向量,由此能说明直线不定向.

1)设椭圆的焦距为,由已知得,解得

椭圆的标准方程为

2)由题意可设直线的方程为

联立,消去并整理,得

计算,此时设

于是

又直线的斜率依次成等比数列,,整理得,即,解得

则直线的方向向量为,即直线是不定向的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业者岗位分布图(90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生),则下列结论中不一定正确的是(

整个互联网行业从业者年龄分布饼状图 90后从事互联网行业者岗位分布图

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数90后比80后多

C.互联网行业中从事设计岗位的人数90后比80前多

D.互联网行业中从事市场岗位的90后人数不足总人数的10%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中,是自然对数的底数.

1)设,当时,求的最小值;

2)证明:当时,总存在两条直线与曲线都相切;

3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,直线l经过与椭圆交于PQ两点.y轴的交点是线段的中点时,.

1)求椭圆的方程;

2)设直线l不垂直于x轴,若满足,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

1)计算,并求数列的通项公式;

2)若数列满足,求证:数列是等比数列;

3)由数列的项组成一个新数列,设为数列的前项和,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如题所示:扇形ABC是一块半径为2千米,圆心角为60°的风景区,P点在弧BC上,现欲在风景区中规划三条三条商业街道PQQRRP,要求街道PQAB垂直,街道PRAC垂直,直线PQ表示第三条街道。

(1)如果P位于弧BC的中点,求三条街道的总长度;

(2)由于环境的原因,三条街道PQPRQR每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?(精确到1万元)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.

其中正确的有____________(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】符合以下性质的函数称为函数:①定义域为,②是奇函数,③(常数),④上单调递增,⑤对任意一个小于的正数,至少存在一个自变量,使.下列四个函数中函数的个数为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体中,EAB中点,F在线段.给出下列判断:①存在点F使得平面;②在平面内总存在与平面平行的直线;③平面与平面ABCD所成的二面角(锐角)的大小与点F的位置无关;④三棱锥的体积与点F的位置无关.其中正确判断的有(

A.①②B.③④C.①③D.②④

查看答案和解析>>

同步练习册答案