精英家教网 > 高中数学 > 题目详情

【题目】已知函数在点处的切线是.

(1)求函数的极值;

(2)当恒成立时,求实数的取值范围(为自然对数的底数).

【答案】(1)答案见解析;(2).

【解析】试题分析:

(1)由题意可得函数的解析式,则的极大值为,无极小值.

(2)原问题等价于恒成立,

【法一】设由题意可得.据此有解得故实数的取值范围是.

【法二】设),则

结合导函数的解析式可知上单调递增,在上单调递减.所以,即则实数的取值范围是.

试题解析:

(1)因为,所以

因为点处的切线是,所以,且

所以,即

所以,所以在上递增,在上递减

所以的极大值为,无极小值.

(2)当恒成立时,由(1)

恒成立,

【法一】设,则

又因为,所以当时,;当时,.

所以上单调递减,在上单调递增,

上单调递增,在上单调递减,.

所以均在处取得最值,所以要使恒成立,

只需,即,解得,又

所以实数的取值范围是.

【法二】设),则

时,,则,即

时,,则,即

所以上单调递增,在上单调递减.

所以,即,又

所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数(其中).

(1)当时,求不等式的解集;

(2)若关于的不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其前项和为,满足,其中.

(1)若,求证:数列是等比数列;

(2)若数列是等比数列,求的值;

(3)若,且,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系.已知直线的参数方程是是参数),圆的极坐标方程为.

(1)求圆心的直角坐标;

(2)由直线上的点向圆引切线,并切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体底面四边形是菱形相交于在平面上的射影恰好是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)若直线与平面所成的角为求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的下顶点为,右顶点为,离心率,抛物线的焦点为是抛物线上一点,抛物线在点处的切线为,且.

(1)求直线的方程;

(2)若与椭圆相交于两点,且,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交管部门为宣传新交规举办交通知识问答活动,随机对该市岁的人群抽样了人,回答问题统计结果如图表所示:

分组

回答正确的人数

回答正确的人数占本组的频率

(1)分别求出的值;

(2)从第组回答正确的人中用分层抽样方法抽取人,则第组每组应各抽取多少人?

(3)在(2)的前提下,决定在所抽取的人中随机抽取人颁发幸运奖,求:所抽取的人中至少有一个第组的人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为,离心率.

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的左、右焦点分别为,过作垂直于轴的直线与椭圆在第一象限交于点,若,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)是椭圆上位于直线两侧的两点.若直线过点,且,求直线的方程.

查看答案和解析>>

同步练习册答案