精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)求函数f(x)的定义域和值域;
(2)判断函数f(x)的奇偶性,并指出函数f(x)的单调性(单调性不需证明).

解:(1)由题意得 解得-1<x<1
∴函数f(x)的定义域为{x|-1<x<1}

又-1<x<1
∴0<x+1<2,

∴函数f(x)的值域为R
(2)对?x∈{x|-1<x<1}都有

∴f(x)为奇函数
∵令t=在(-1,1)递减
∵y=lgt在定义域上为增函数
在(-1,1)递减
分析:(1)令对数函数的真数大于0,解分式不等式求出x的范围写出区间形式即为定义域;将真数分离常数,利用反比例函数的值域求出函数f(x)的值域.
(2)利用函数的奇偶性的定义,先求出函数的定义域关于原点对称,再检验f(-x)与f(x)的关系,判断出函数的奇偶性,利用复合函数的单调性:同增异减判断出函数的单调性.
点评:解决判断函数的奇偶性:应该先求出函数的定义域,定义域关于原点对称是函数具有奇偶性的必要条件;判断复合函数的单调性利用其法则:同增异减进行判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=
x2-1,x<-1
|x|+1,-1≤x≤1
3x
+3,x>1
编写一程序求函数值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖南省高一12月月考数学 题型:解答题

(本题满分14分)定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。

已知函数

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界函数值,求实数的取值范围;

(3)若,求函数上的上界T的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间数学公式上的函数值的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市铜山县棠张中学高三(上)周练数学试卷(理科)(11.3)(解析版) 题型:解答题

已知函数
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间上的函数值的取值范围.

查看答案和解析>>

同步练习册答案