精英家教网 > 高中数学 > 题目详情
如图,正方形ABCD的边长为2,点P是线段BC上的动点,则(
PB
+
PD
)•
PC
的最小值为
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:建立平面直角坐标系A-xy,设P(2,x),则
PB
=(0,-x),x∈[0,2],
PD
=(-2,2-x),
PC
=(0,2-x),利用x 表示(
PB
+
PD
)•
PC
的函数求最值.
解答: 解:建立平面直角坐标系A-xy,设P(2,x),
PB
=(0,-x),x∈[0,2],
PD
=(-2,2-x),
PC
=(0,2-x),
所以(
PB
+
PD
)•
PC
=2x2-6x+4=2(x-1.5)2+4-4.5,
因为x∈[0,2],
所以x=1.5时,(
PB
+
PD
)•
PC
的最小值为-0.5即-
1
2

故答案为:-
1
2
点评:本题考查了向量的数量积以及二次函数闭区间的最值,关键是建立坐标系,将问题转化为二次函数的最值求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=2,则
2cos(
π
2
+α)-cos(π-α)
cosα+3sinα
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在扇形OAB中,∠AOB=60°,C为弧AB上的一个动点.若
OC
=x
OA
+y
OB
,求x+3y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点P为Rt△ABC的斜边AB的延长线上一点,且PC与Rt△ABC的外接圆相切,过点C作AB的垂线,垂足为D,若PA=18,PC=6,求线段CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+bx(a,b∈R)在x=
1
2
处取得极值,且曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直.
(1)求实数a、b的值;
(2)若对任意x∈[1,+∞),不等式f(x)≤(m-2)x-
m
x
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=2x+x
1
3
,则f(2014)等于(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
2
-y2=1的渐近线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知O是线段AB的中点,M是平面上任意一点,试证明
MA
+
MB
=
MO
+
MO

查看答案和解析>>

科目:高中数学 来源: 题型:

已知C为线段AB的中点,P为直线AB外一点,满足|
PA
|=|
PB
|=3,|
PA
-
PB
|=4,
PI
IC
BI
=m(
AC
|
AC
|
+
AP
|
AP
|
)+
BA
,m>0,则λ=
 

查看答案和解析>>

同步练习册答案