(1)求证:PB∥平面EFG;
(2)求异面直线EG与BD所成的角的余弦值;
(3)在线段CD上是否存在一点Q,使得点A到平面EFQ的距离为,若存在,求出CQ的值;若不存在,请说明理由.
解法一:(1)证明:取AB为中点H,连结GH,HE,
∵E、F、G分别是线段PA、PD、CD的中点,
∴GH∥AD∥EF.
∴E,F,G,H四点共面.
又H为AB中点,∴EH∥PB.
又EH面EFG,PB平面EFG,
∴PB∥面EFG.
(2)取BC的中点M,连结GM、AM、EM,则GM∥BD,
∴∠EGM(或其补角)就是异面直线EG与BD所成的角.
在Rt△MAE中,EM==,
同理EG=6,又GM=BD=,
∴在Rt△MGE中,cos∠EGM=.
故异面直线EG与BD所成角的余弦值为.
(3)假设在线段CD上存在一点Q,满足题设条件,过点Q作OR⊥AB于点R,连结RE,则QR∥AD.
∵四边形ABCD是正方形,△PAD是直角三角形,且PA=AD=2,
∴AD⊥AB,AD⊥PA.又AB∩PA=A,
∴AD⊥平面PAB.
又∵E,F分别是PA,PD的中点,
∴EF∥AD.∴EF⊥平面PAB.
又EF面EFQ,∴EFQ⊥平面PAB.
过A作AT⊥ER于点T,则AT⊥面EFQ,
∴AT就是点A到平面EFQ的距离.
设CQ=x(0≤x≤2),则BR=CQ=x,AR=2-x,AE=1,
在Rt△EAR中,AT==,
解得x=.
故存在点Q,当CQ=时,点A到平面EFQ的距离为.
解法二:建立如图所示的空间直角坐标系A—xyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).
(1)证明:∵=(2,0,-2),=(0,-1,0),=(1,1,-1),
设=s+t,
即(2,0,-2)=s(0,-1,0)+t(1,1,-1),解得s=t=2.
∴=2+2.
又∵与不共线,
∴,与共面.
∵平面EFG,∴PB∥平面EFG.
(2)∵=(1,2,-1),=(-2,2,0),
∴cos〈,〉=.
故平面直线EG与BD所成角的余弦值为.
(3)假设在线段CD上存在一点Q满足题设条件.
令CQ=m(0≤m≤2),则DQ=2-m.∴点Q的坐标为(2-m,2,0).
∴(2-m,2,-1).而=(0,1,0),
设平面EFQ的法向量为n(x,y,z),则
∴令x=1,则n=(1,0,2-m).
又=(0,0,1),
∴点A到平面EFQ的距离d==,
即(2-m)2=.
∴m=或m=>2不合题意,舍去.
故存在点Q,当CQ=时,点A到平面EFQ的距离为.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
图22
(1)求证:EN∥平面PCD;
(2)求证:平面PBC⊥平面ADMN;
(3)求平面PAB与平面ABCD所成二面角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com