精英家教网 > 高中数学 > 题目详情
设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是(  )
A.m∥β且l1∥αB.m∥l1且n∥l2
C.m∥β且n∥βD.m∥β且n∥l2
B
对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,综上选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且=2.求证:直线EG,FH,AC相交于一点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ABCD中,点E、F分别是边AB、BC上的点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A′.
(1)△A′EF恰好是正三角形且Q是A′F的中点,求证:EQ⊥平面A′FD
(2)当E、F分别是AB、BC的中点时,求二面角A′-EF-D的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条互不重合的直线m,n,两个不同的平面α,β,下列命题中正确的是(  )
A.若m∥α,n∥β,且m∥n,则α∥β
B.若m⊥α,n∥β,且m⊥n,则α⊥β
C.若m⊥α,n∥β,且m∥n,则α∥β
D.若m⊥α,n⊥β,且m⊥n,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:
①若m∥l,且m⊥α,则l⊥α;
②若m∥l,且m∥α,则l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;
④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.
其中正确命题的个数是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体ABCD-A′B′C′D′的棱长为4,动点E、F在棱AB上,且EF=2,动点Q在棱D′C′上,则三棱锥A′-EFQ的体积(  )
A.与点E、F的位置有关
B.与点Q的位置有关
C.与点E、F、Q的位置都有关
D.与点E、F、Q的位置均无关,是定值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥中,已知, 一绳子从A点绕三棱锥侧面一圈回到点A的距离中,绳子最短距离是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面和直线,给出条件:①;②;③;④;⑤.为使,应选择下面四个选项中的(   )
A.③⑤B.①⑤C.①④D.②⑤

查看答案和解析>>

同步练习册答案