精英家教网 > 高中数学 > 题目详情
若x∈R,n∈N*,定义:Mxn=x(x+1)(x+2)…(x+n-1),例如M3-5=(-5)•(-4)(-3)=-60,则函数f(x)=M7x-3cos( )
A.是偶函数不是奇函数
B.是奇函数不是偶函数
C.既是奇函数又是偶函数
D.既不是奇函数也不是偶函数
【答案】分析:先由已知的定义求解出函数f(x)的解析式,然后代入求解f(-x),检验f(-x)与f(x)的关系,判断函数的奇偶性
解答:解:由题意可得,f(x)=(x-3)(x-2)(x-1)x(x+1)(x+2)(x+3)cos
=x(x2-9)(x2-4)(x2-1)cos
∴f(-x)=-x(x2-9)(x2-4)(x2-1)cos(-
=-x(x2-9)(x2-4)(x2-1)cos=-f(x)
∴函数f(x)为奇函数
故选:B
点评:本题主要考查了函数的奇偶性的判断,利用的奇偶函数的定义,解题的关键是由题目中的定义求解出函数的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、若x∈R,n∈N+,定义Mxn=x(x+1)(x+2)…(x+n-1),例如M-55=(-5)(-4)(-3)(-2)(-1)=-120,则函数f(x)=xMx-919的奇偶性为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

11、若x∈R,n∈N*,定义:Mxn=x(x+1)(x+2)…(x+n-1),则函数f(x)=xMx-919的图象关于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈R,n∈N*,规定:
H
n
x
=x(x+1)(x+2)…(x+n-1),例如:
H
3
-3
(-3)•(-2)•(-1)=-6,则函数f(x)=x•
H
7
x-3
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈R,n∈N*,定义
E
n
x
=x(x+1)(x+2)…(x+n-1)
,如
E
4
-4
=(-4)(-3)(-2)(-1)=24
,则函数f(x)=x•
E
19
x-9
的奇偶性为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈R,n∈N*,定义:
M
n
x
=x(x+1)(x+2)…(x+n-1)
,例如
M
6
-6
=(-6)×(-5)×(-4)×(-3)×(-2)×(-1)
,则函数f(x)=x
M
13
x-6
(  )

查看答案和解析>>

同步练习册答案