精英家教网 > 高中数学 > 题目详情

【题目】众所周知,城市公交车的数量太多会造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的50名候车乘客中随机抽取10名,统计了他们的候车时间(单位:分钟),得到下表.

候车时间

人数

1

4

2

2

1

1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);

2)估计这50名乘客的候车时间少于10分钟的人数.

【答案】111.5;(2

【解析】

1)每组中点数据乘以该组人数,各组乘积之和再除以10即这10名乘客的平均候车时间;

2)根据样本中候车时间少于10分钟的频率为,估计这50名乘客的候车时间少于10分钟的人数.

1

故这10名乘客的平均候车时间约为11.5分钟;

2)因为样本中候车时间少于10分钟的频率为

所以可估计这50名乘客的候车时间少于10分钟的人数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年的天猫“双11”交易金额又创新高,达到2684亿元,物流爆增.某机构为了了解网购者对收到快递的满意度进行调查,对某市5000名网购者发出满意度调查评分表,收集并随机抽取了200名网购者的调查评分(评分在70100分之间),其频率分布直方图如图,评分在95分及以上确定为“非常满意”.

1)求的值;

2)以样本的频率作概率,试估计本次调查的网购者中“非常满意”的人数;

3)按分层抽样的方法,从评分在90分及以上的网购者中抽取6人,再从这6人中随机地选取2人,求至少选到一个“非常满意”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为椭圆上任意一点,直线与圆交于两点,点为椭圆的左焦点.

(Ⅰ)求椭圆的离心率及左焦点的坐标;

(Ⅱ)求证:直线与椭圆相切;

(Ⅲ)判断是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年2月25日,第届罗马尼亚数学大师赛(简称)于罗马尼亚首都布加勒斯特闭幕,最终成绩揭晓,以色列选手排名第一,而中国队无一人获得金牌,最好成绩是获得银牌的第名,总成绩排名第.而在分量极重的国际数学奥林匹克()比赛中,过去拿冠军拿到手软的中国队,也已经有连续年没有拿到冠军了.人们不禁要问“中国奥数究竟怎么了?”,一时间关于各级教育主管部门是否应该下达“禁奥令”成为社会热点.某重点高中培优班共人,现就这人“禁奥令”的态度进行问卷调查,得到如下的列联表:

不应下“禁奥令”

应下“禁奥令”

合计

男生

5

女生

10

合计

50

若采用分层抽样的方法从人中抽出人进行重点调查,知道其中认为不应下“禁奥令”的同学共有人.

(1)请将上面的列联表补充完整,并判断是否有的把握认为对下“禁奥令”的态度与性别有关?请说明你的理由;

(2)现从这人中抽出名男生、名女生,记此人中认为不应下“禁奥令”的人数为,求的分布列和数学期望.

参考公式与数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.

(1)求未来4年中,至多1年的年入流量超过120的概率;

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系:

年入流量

发电量最多可运行台数

1

2

3

若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,则对任意非零实数,方程 的解集不可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园举办“yue”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:

打卡天数

17

18

19

20

21

男生人数

3

5

3

7

2

女生人数

3

5

5

7

3

1)根据上表数据,求该幼儿园男生平均打卡的天数;

2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCDA1B1C1D1 的棱长为 2,且AC BD 交于点OE 为棱DD1 中点,以A 为原点,建立空间直角坐标系Axyz,如图所示.

(Ⅰ)求证:B1O平面EAC

(Ⅱ)若点F EA 上且B1FAE,试求点F 的坐标;

(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案