精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,已知点P(2,0),曲线C的参数方程为 (t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C的普通方程和极坐标方程;
(Ⅱ)过点P且倾斜角为 的直线l交曲线C于A,B两点,求|AB|.

【答案】解:(Ⅰ)因为 消t得曲线C的普通方程为y2=4x.

∵x=ρcosθ,y=ρsinθ,∴ρ2sin2θ=4ρcosθ,

即曲线C的极坐标方程为ρsin2θ=4cosθ.

(Ⅱ)因为直线l过点P(2,0)且倾斜角为

所以直线l的标准参数方程为

将其代入y2=4x,整理可得 ,(8分)

设A,B对应的参数分别为s1,s2

所以


【解析】(Ⅰ)利用三种方程的转化方法,即可求曲线C的普通方程和极坐标方程;(Ⅱ)直线l的标准参数方程为 ,将其代入y2=4x,利用参数的几何意义,即可求|AB|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2017年10月18日至24日,中国共产党第十九次全国人民代表大会在北京顺利召开.大会期间,北京某高中举办了一次“喜迎十九大”的读书读报知识竞赛,参赛选手为从高一年级和高二年级随机抽取的各100名学生.图1和图2分别是高一年级和高二年级参赛选手成绩的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个年级学生的平均成绩;

(2)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下,认为高一、高二两个年级学生这次读书读报知识竞赛的成绩有差异.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中, ,角A的平分线AD交BC于点D,设∠BAD=α,
(Ⅰ)求sinC;
(Ⅱ)若 ,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 + =1,圆C2:x2+y2=t经过椭圆C1的焦点.
(1)设P为椭圆上任意一点,过点P作圆C2的切线,切点为Q,求△POQ面积的取值范围,其中O为坐标原点;
(2)过点M(﹣1,0)的直线l与曲线C1 , C2自上而下依次交于点A,B,C,D,若|AB|=|CD|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形ABCD是菱形,且∠A=60°,AB=2,E为AB的中点,将四边形EBCD沿DE折起至EDC1B1 , 如图2.
(Ⅰ) 求证:平面ADE⊥平面AEB1
(Ⅱ) 若二面角A﹣DE﹣C1的大小为 ,求三棱锥C1﹣AB1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}前5项和为50,a7=22,数列{bn}的前n项和为Sn , b1=1,bn+1=3Sn+1. (Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若数列{cn}满足 ,n∈N* , 求c1+c2+…+c2017的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1的棱和六个面的对角线共24条,其中与体对角线AC1垂直的有条.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为菱形,E,F分别是BB1 , DD1的中点,G为AE的中点且FG=3,则△EFG的面积的最大值为(
A.
B.3
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列{an}的前n项和为Sn , 满足an+1= ,n∈N* , 且a2 , a5 , a14构成等比数列.
(1)求数列{an}的通项公式;
(2)若对一切正整数n都有 + +…+ ,求实数a的最小值.

查看答案和解析>>

同步练习册答案