精英家教网 > 高中数学 > 题目详情
已知过抛物线y2=12x焦点的一条直线与抛物线相交于A,B两点,若|AB|=14,则线段AB的中点到y轴的距离等于(  )
A、1B、2C、3D、4
考点:直线与圆锥曲线的关系
专题:圆锥曲线的定义、性质与方程
分析:设AB的中点为E,过 A、E、B 分别作准线的垂线,垂足分别为 C、G、D,如图所示,由EF为直角梯形的中位线及抛物线的定义求出EG,则 EH=EG-1 为所求.
解答: 解:抛物线y2=12x焦点(3,0),准线为 l:x=-3,
设AB的中点为E,过 A、E、B分别作准线的垂线,垂足分别为 C、G、D,EF交纵轴于点H,如图所示:
则由EF为直角梯形的中位线知,
EG=
AC+BD
2
=
AF+BF
2
=
AB
2
=7,
∴EH=EG-3=4,
则AB的中点到y轴的距离等于4.
故选:D.
点评:本题考查直线与抛物线的位置关系,抛物线的简单性质的应用,体现了数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在△ABC中,若∠B=90°,∠ACD=45°,BC=3,BD=1,则AD=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC中,∠BAC=90°,AD⊥BC于D,求证:|
BC
|2=|
DB
+
DA
|2+|
DC
+|
DA
|2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知棱柱ABCD-A1B1C1D1的底面是正方形,且AA1⊥平面ABCD,E为棱AA1的中点,F为线段BD1的中点.
(1)证明:EF∥平面ABCD;    
(2)证明:EF⊥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,S4=26.
(1)求数列{an}的通项公式;
(2)设Pn=a1+a4+…+a3n-2,Qn=a10+a12+…+a2n+8,试比较Pn与Qn的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sinωxcosωx+
3
sin2ωx-
3
2
(ω>0)的图象与直线y=m(m为常数)相切,并且切点的横坐标依次构成公差为π的等差数列.
(Ⅰ)求ω及m的值;
(Ⅱ)求函数y=f(x)在x∈[0,2π]上所有零点的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直四棱柱ABC-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=
2
,AA1=3,E为CD上一点,DE=1,EC=3.
(Ⅰ)证明:BE⊥平面BB1C1C;
(Ⅱ)求直线C1E与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验,借鉴其原理,我们也可以采用计算机随机数模拟实验的方法来估计π的值:先由计算机产生1200对0~1之间的均匀随机数x,y;再统计两个数能与1构成钝角三角形三边的数对(x,y)的个数m;最后再根据统计数m来估计π的值,假如统计结果是m=940,那么可以估计π≈
 
(精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈[-1,1]时,-2x2+2ax+4≥0恒成立,求a的范围.

查看答案和解析>>

同步练习册答案