分析 (1)设A(x0,y0),由已知得:$\left\{{\begin{array}{l}{{x_0}_{\;}+\frac{p}{2}=3}\\{\frac{y_0}{x_0}=\sqrt{2}}\\{y_0^2=2p{x_0}}\end{array}}\right.$,即可求抛物线C的方程;
(2)直线与抛物线方程联立,求出|BD|,|CE|,可得面积,利用基本不等式,即可得出结论.
解答 解(1)设A(x0,y0),由已知得:$\left\{{\begin{array}{l}{{x_0}_{\;}+\frac{p}{2}=3}\\{\frac{y_0}{x_0}=\sqrt{2}}\\{y_0^2=2p{x_0}}\end{array}}\right.$…(3分)
解得:p=2,故求抛物线C的方程为y2=4x…(4分)
(2)由已知直线l1的斜率存在且不为0,设其方程为y=k(x-1)
由$\left\{{\begin{array}{l}{y=k(x-1)}\\{{y^2}=4x}\end{array}}\right.$得k2x2-(2k2+4)x+k2=0…(5分)
∵△>0,设B(x1,y1)、D(x2,y2)所以${x_1}+{x_2}=2+\frac{4}{k^2}$,
∴$|BD|={x_1}+{x_2}+2=4(1+\frac{1}{k^2})$…(7分)
同理设C(x3,y3)、E(x4,y4)
所以${x_3}+{x_4}=2+4{k^2}$,∴$|CE|={x_3}+{x_4}+2=4(1+{k^2})$…(9分)
设四边形BCDE的面积$S=\frac{1}{2}|BD||CE|=8(2+{k^2}+\frac{1}{k^2})≥32$…(11分)
当且仅当k=±1时,四边形BCDE的面积取得最小值32.…(12分)
点评 本题考查了抛物线的标准方程及其性质、直线与抛物线相交弦长问题、一元二次方程的根与系数的关系、基本不等式的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ${a^{\frac{1}{6}}}$ | B. | ${a^{\frac{5}{6}}}$ | C. | ${a^{\frac{7}{6}}}$ | D. | ${a^{\frac{2}{3}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 把函数f(x)图象上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移$\frac{π}{4}$个单位长度,可得到函数g(x)的图象 | |
B. | 两个函数的图象均关于直线$x=-\frac{π}{4}$对称 | |
C. | 两个函数在区间$(-\frac{π}{4},\frac{π}{4})$上都是单调递增函数 | |
D. | 函数y=g(x)在[0,2π]上只有4个零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (12,13) | B. | (-12,13) | C. | (-12,-13) | D. | (12,-13) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{OM}=\frac{1}{2}\overrightarrow{OA}-\overrightarrow{OB}+\overrightarrow{OC}$ | B. | $\overrightarrow{OM}=\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}-\overrightarrow{OC}$ | C. | $\overrightarrow{OM}=\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\overrightarrow{OC}$ | D. | $\overrightarrow{OM}=\frac{1}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}+\overrightarrow{OC}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com