ÒÑ֪˫ÇúÏßx2-y2=1µÄ½¹µãÓëÍÖÔ²
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ½¹µãÖغϣ¬ÇÒ¸ÃÍÖÔ²µÄ³¤Ö᳤Ϊ4£¬M¡¢NÊÇÍÖÔ²ÉϵĶ¯µã£®
£¨1£©ÇóÍÖÔ²±ê×¼·½³Ì£»
£¨2£©É趯µãPÂú×㣺
OP
=
OM
+2
ON
£¬Ö±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
1
2
£¬ÇóÖ¤£º´æÔÚ¶¨µãF1£¬F2£¬Ê¹µÃ|PF1|+|PF2|Ϊ¶¨Öµ£¬²¢Çó³öF1£¬F2µÄ×ø±ê£»
£¨3£©ÈôMÔÚµÚÒ»ÏóÏÞ£¬ÇÒµãM£¬N¹ØÓÚÔ­µã¶Ô³Æ£¬µãMÔÚxÖáµÄÉäӰΪA£¬Á¬½ÓNA²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãB£¬ÇóÖ¤£ºÒÔNBΪֱ¾¶µÄÔ²¾­¹ýµãM£®
¿¼µã£ºÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺ÏòÁ¿ÓëԲ׶ÇúÏß
·ÖÎö£º£¨1£©ÓÉË«ÇúÏß·½³ÌÇó³öË«ÇúÏߵĽ»µã×ø±ê£¬ÇóµÃÍÖÔ²µÄ°ë½¹¾à£¬½áºÏÒÑÖªÍÖÔ²µÄ³¤Ö᳤ÇóµÃa£¬Ôòb¿ÉÇó£¬ÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©Éè³öPµãMµã¼°NµãµÄ×ø±ê£¬ÓÉÏòÁ¿¹ØϵµÃµ½P¡¢M¡¢NµÄ×ø±ê¹Øϵ£¬ÔÙÓÉÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
1
2
¿ÉµÃM¡¢NµÄ×ø±ê¹Øϵ£¬½áºÏM¡¢NÔÚÍÖÔ²ÉϿɵÃPµãµÄ¹ì¼£ÊÇÍÖÔ²£¬ËµÃ÷|PF1|+|PF2|Ϊ¶¨Öµ£¬²¢Çó³öF1£¬F2µÄ×ø±ê£»
£¨3£©Éè³öMÓëBµÄ×ø±ê£¬µÃµ½A£¬NµÄ×ø±ê£¬ÓÉÌâÉèÖªNAºÍNBµÄбÂÊÏàµÈ£¬Óɴ˵õ½MÓëBµÄ×ø±êµÄ¹Øϵ£¬È»ºó½áºÏM£¬BÔÚÍÖÔ²ÉÏÖ¤³ökMN•kMB+1=0£¬¼´kMN•kMB=-1£¬´Ó¶øÖ¤µÃÒÔNBΪֱ¾¶µÄÔ²¾­¹ýµãM£®
½â´ð£º £¨1£©½â£ºÓÉÌâÉè¿ÉÖª£ºË«ÇúÏßx2-y2=1µÄ½¹µãΪ£¨¡À
2
£¬0£©£¬
¡àÍÖÔ²ÖеÄc=
2
£¬
ÓÖÓÉÍÖÔ²µÄ³¤ÖáΪ4µÃ  a=2£¬
¹Êb2=a2-c2=2£®
¹ÊÍÖÔ²µÄ±ê×¼·½³ÌΪ£º
x2
4
+
y2
2
=1
£»        
£¨2£©Ö¤Ã÷£ºÉèP£¨xp£¬yp£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉ
OP
=
OM
+2
ON
¿ÉµÃ£º
xP=x1+2x2
yP=y1+2y2
 ¢Ù
ÓÉÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
1
2
¿ÉµÃ£º
y1y2
x1x2
=-
1
2
£¬¼´x1x2+2y1y2=0  ¢Ú
Óɢ٢ڿɵãºxP2+2yP2=(x1+2x2)2+2(y1+2y2)2=(x12+2y12)+4(x22+2y22)£®
¡ßM¡¢NÊÇÍÖÔ²ÉϵĶ¯µã£¬¹Êx12+2y12=4£¬x22+2y22=4£®
¹ÊxP2+2yP2=20£¬¼´
xP2
20
+
yP2
10
=1
£»
ÓÉÍÖÔ²¶¨Òå¿ÉÖª´æÔÚÁ½¸ö¶¨µãF1(-
10
£¬0)£¬F2(
10
£¬0)
£¬Ê¹µÃ¶¯µãPµ½Á½¶¨µã¾àÀëºÍΪ¶¨Öµ4
5
£» 
£¨3£©Ö¤Ã÷£ºÉèM£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÌâÉè¿ÉÖªx1£¾0£¬y1£¾0£¬x2£¾0£¬y2£¾0£¬x1¡Ùx2£¬A£¨x1£¬0£©£¬N£¨-x1£¬-y1£©£¬
ÓÉÌâÉè¿ÉÖªlABбÂÊ´æÔÚÇÒÂú×ãkNA=kNB£¬¡à
y1
2x1
=
y2+y1
x2+x1
£®¢Û
kMN•kMB+1=
y1
x1
y2-y1
x2-x1
+1
£®¢Ü
½«¢Û´úÈë¢Ü¿ÉµÃ£ºkMN•kMB+1=
2(y2+y1)
x2+x1
y2-y1
x2-x1
+1=
(x22+2y22)-(x12+2y12)
x22-x12
£®¢Ý
µãM£¬BÔÚÍÖÔ²
x2
4
+
y2
2
=1
£¬
¹ÊkMN•kMB+1=
(x22+2y22)-(x12+2y12)
x22-x12
=
4-4
x22-x12
=0
£®
¡àkMN•kMB+1=0£¬kMN•kMB=-1£¬
¡àMN¡ÍMB£®
Òò´ËÒÔNBΪֱ¾¶µÄÔ²¾­¹ýµãM£®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇ󷨣¬ÑµÁ·ÁËÀûÓÃÏòÁ¿¹ØϵÇóµÃµãµÄ×ø±êÖ®¼äµÄ¹Øϵ£¬½â´ð´ËÌâµÄ¹Ø¼üÊÇÉè³öËùÓõãµÄ×ø±ê£¬³ä·ÖÀûÓõãÔÚÍÖÔ²ÉÏÕâÒ»ÌØÐÔ£¬Í¨¹ýÕûÌå´ú»»»¯¼ò£¬´ËÀàÎÊÌâµÄ½â¾öÐèҪѧÉú¾ßÓнÏÇ¿µÄ¼ÆËãÄÜÁ¦ºÍÂß¼­ÍÆÀíÄÜÁ¦£¬ÊǸ߿¼ÊÔ¾íÖеÄѹÖáÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²E£º
x2
100
+
y2
25
=1µÄÉ϶¥µãΪA£¬Ö±Ïßy=-4½»ÍÖÔ²EÓÚµãB£¬C£¨µãBÔÚµãCµÄ×ó²à£©£¬µãPÔÚÍÖÔ²EÉÏ£®
£¨¢ñ£©ÇóÒÔÔ­µãOΪ¶¥µã£¬ÍÖÔ²µÄÓÒ½¹µãΪ½¹µãµÄÅ×ÎïÏߵķ½³Ì£»
£¨¢ò£©ÇóÒÔÔ­µãOΪԲÐÄ£¬ÓëÖ±ÏßABÏàÇеÄÔ²µÄ·½³Ì£»
£¨¢ó£©ÈôËıßÐÎABCPΪÌÝÐΣ¬ÇóµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁйØÓÚÁ½Ìõ²»Í¬µÄÖ±Ïßl£¬mÁ½¸ö²»ÖغϵÄƽÃæ¦Á£¬¦ÂµÄ˵·¨£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢Èôl?¦ÁÇÒ¦Á¡Í¦Â£¬Ôòl¡Í¦Â
B¡¢Èôl¡Í¦ÂÇÒm¡Í¦Â£¬Ôòl¡Îm
C¡¢Èôl¡Í¦ÂÇÒ¦Á¡Í¦Â£¬Ôòl¡Î¦Á
D¡¢Èô¦Á¡É¦Â=mÇÒl¡Ím£¬Ôòl¡Í¦Á

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪ȫ¼¯U={x¡ÊZ|1¡Üx¡Ü5}£¬A={1£¬2£¬3}£¬∁UB={1£¬2}£¬ÔòA¡ÉB£¨¡¡¡¡£©
A¡¢{1£¬2}
B¡¢{1£¬3}
C¡¢{3}
D¡¢{1£¬2£¬3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èôº¯Êýy=cos¦Øx£¨¦Ø£¾0£©µÄͼÏóÏòÓÒƽÒÆ
¦Ð
6
¸öµ¥Î»ºóÓ뺯Êýy=sin¦ØxµÄͼÏóÖغϣ¬Ôò¦ØµÄÖµ¿ÉÄÜÊÇ£¨¡¡¡¡£©
A¡¢
1
2
B¡¢1
C¡¢3
D¡¢4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ
1
2
£¬ÒÔÔ­µãOΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïßx-y+
6
=0ÏàÇУ®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßL£ºy=kx+mÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£¬ÇÒkOA•kOB=-
b2
a2
£¬ÇóÖ¤£º¡÷AOBµÄÃæ»ýΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijУ´Ó¸ßÒ»Ä꼶ѧÉúÖÐËæ»ú³éÈ¡40ÃûѧÉú×÷ΪÑù±¾£¬½«ËûÃǵÄÆÚÖп¼ÊÔÊýѧ³É¼¨£¨Âú·Ö100·Ö£¬³É¼¨¾ùΪ²»µÍÓÚ40·ÖµÄÕûÊý£©·Ö³ÉÁù×飺[40£¬50£©£¬[50£¬60£©£¬[90£¬100£©ºóµÃµ½ÈçͼµÄƵÂÊ·Ö²¼Ö±·½Í¼£®

£¨¢ñ£©ÇóͼÖÐʵÊýaµÄÖµ£»
£¨¢ò£©Èô¸ÃУ¸ßÒ»Ä꼶¹²ÓÐѧÉú500ÈË£¬ÊÔ¹À¼Æ¸ÃУ¸ßÒ»Ä꼶ÔÚ¿¼ÊÔÖгɼ¨²»µÍÓÚ60·ÖµÄÈËÊý£»
£¨¢ó£©Èô´ÓÑù±¾ÖÐÊýѧ³É¼¨ÔÚ[40£¬50£©Óë[90£¬100]Á½¸ö·ÖÊý¶ÎÄÚµÄѧÉúÖÐËæ»úÑ¡È¡Á½ÃûѧÉú£¬ÊÔÓÃÁоٷ¨ÇóÕâÁ½ÃûѧÉúµÄÊýѧ³É¼¨Ö®²îµÄ¾ø¶ÔÖµ²»´óÓÚ10µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬µãA(0£¬
2
)
£¬Ï߶ÎFAµÄÖеãÔÚÅ×ÎïÏßÉÏ£®É趯ֱÏßl£ºy=kx+mÓëÅ×ÎïÏßÏàÇÐÓÚµãP£¬ÇÒÓëÅ×ÎïÏßµÄ×¼ÏßÏཻÓÚµãQ£¬ÒÔPQΪֱ¾¶µÄÔ²¼ÇΪԲC£®
£¨1£©ÇópµÄÖµ£»
£¨2£©ÊÔÅжÏÔ²CÓëxÖáµÄλÖùØϵ£»
£¨3£©ÔÚ×ø±êƽÃæÉÏÊÇ·ñ´æÔÚ¶¨µãM£¬Ê¹µÃÔ²Cºã¹ýµãM£¿Èô´æÔÚ£¬Çó³öMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèÃüÌâp£º·½³Ìx2+mx+1=0ÓÐʵ¸ù£¬ÃüÌâq£ºÊýÁÐ{
1
n(n+1)
}
µÄÇ°nÏîºÍΪSn£¬¶Ô?n¡ÊN*ºãÓÐm¡ÜSn£¬Èôp»òqΪÕ棬pÇÒqΪ¼Ù£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸