精英家教网 > 高中数学 > 题目详情
13.|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为150°,则($\overrightarrow{a}$+$\overrightarrow{b}$)2=$25-12\sqrt{3}$.

分析 由条件利用两个向量的数量积的定义即可求得$\overrightarrow{a}•\overrightarrow{b}$,从而可得到($\overrightarrow{a}$+$\overrightarrow{b}$)2

解答 解:由|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为150°,
得$\overrightarrow{a}•\overrightarrow{b}=|\overrightarrow{a}|•|\overrightarrow{b}|•cos150°=3×4×(-\frac{\sqrt{3}}{2})$=$-6\sqrt{3}$,
则($\overrightarrow{a}$+$\overrightarrow{b}$)2=$|\overrightarrow{a}{|}^{2}+2\overrightarrow{a}•\overrightarrow{b}+|\overrightarrow{b}{|}^{2}$=${3}^{2}+2×(-6\sqrt{3})+{4}^{2}$=25-$12\sqrt{3}$.
故答案为:$25-12\sqrt{3}$.

点评 本题主要考查两个向量的数量积的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2alnx-$\frac{1}{2}$ax2+2x,实数a≠0.
(1)若f(x)在区间(1,3)上存在单调递减区间,求实数a的取值范围;
(2)函数f(x)的图象是否存在不同两点A(x1,y1),B(x2,y2),使f(x)在点M(x0,f(x0))处的切线l满足l∥AB(其中x0=$\frac{{x}_{1}+{x}_{2}}{2}$)?若存在,求出A,B的坐标;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正六边形ABCDEF中,已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{FA}$=$\overrightarrow{b}$,则$\overrightarrow{BC}$=$\overrightarrow{a}$-$\overrightarrow{b}$.(用$\overrightarrow{a}$,$\overrightarrow{b}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知双曲线C的焦点在x轴上且渐近线方程为y=±$\sqrt{2}$x,直线L:y=$\frac{\sqrt{3}}{3}$(x-3)与双曲线C交于A,B两点,|AB|=$\frac{16\sqrt{3}}{5}$,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在长方体ABCD-A1B1C1D1中,E、F分别是面对角线B1D1、A1B上的点,且D1E=2EB1,BF=2FA1.求证.EF∥AD1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数在(0,+∞)上是增函数的是(  )
A.y=9-x2B.y=|x-1|C.y=($\frac{1}{2}$)xD.y=x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+x,正项数列{an}前n项和为Sn,且点(an,2Sn)(n∈N*)在f(x)的图象上.
(1)求数列{an}的通项公式;
(2)若bn=(-1)nan(n∈N*),求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若锐角α,β满足(1+$\sqrt{3}$tanα)(1+$\sqrt{3}$tanβ)=4,则α+β=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{2}$(sinx+cosx)•cosx-$\frac{\sqrt{2}}{2}$;
(1)求函数f(x)的单调递增区间;
(2)当x$∈[0,\frac{7π}{24}]$时,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案