精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的方程为,过点且斜率为的直线与曲线相切于点

(1)以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,求曲线的极坐标方程和点的极坐标;

(2)若点在曲线上,求面积的最大值.

【答案】(1) ;点的极坐标为.(2)

【解析】

(1)由得曲线的极坐标方程为,即,结合图象可求得的极径和角,可得的极坐标;

(2)不妨取,设,根据面积公式以及三角函数的性质可得最大值.

解(1)由

故曲线的极坐标方程为,即

如图:当与圆相切时,

为等边三角形,

∴点的极坐标为

(2)由于圆、点、点均关于轴对称,

故不论点A在何处,都不会影响面积最大值的取得.

不妨取,设

,即时,面积取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,四边形为菱形,且的中点.

(1)求证:平面

(2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十八届五中全会首次提出了绿色发展理念,将绿色发展作为十三五乃至更长时期经济社会发展的一个重要理念.某地区践行绿水青山就是金山银山的绿色发展理念,2015年初至2019年初,该地区绿化面积y(单位:平方公里)的数据如下表:

年份

2015

2016

2017

2018

2019

年份代号x

1

2

3

4

5

绿化面积y

2.8

3.5

4.3

4.7

5.2

1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

2)利用(1)中的回归方程,预测该地区2025年初的绿化面积.

(参考公式:线性回归方程:为数据平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线,直线的斜率为2.

(Ⅰ)若相切,求直线的方程;

(Ⅱ)若相交于,线段的中垂线交,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩.

某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).

(Ⅰ)求物理原始成绩在区间(47,86)的人数;

(Ⅱ)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间[61,80]的人数,求X的分布列和数学期望.

(附:若随机变量,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列满足:,当'时, (其中表示,…,中的最大项),有以下结论:

若数列是常数列,则

若数列是公差的等差数列,则

若数列是公比为的等比数列,则

若存在正整数,对任意,都有,则,是数列的最大项.

其中正确结论的序号是____(写出所有正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,过点P(0,1)且互相垂直的两条直线分別与圆O:交于点A,B,与圆M:(x﹣2)2+(y﹣1)2=1交于点C,D.

(1)若AB=,求CD的长;

(2)若CD中点为E,求△ABE面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若对任意恒成立,求实数的取值范围.

2)设函数在区间上有两个极值点

i)求实数的取值范围;

(ⅱ)求证:

查看答案和解析>>

同步练习册答案