精英家教网 > 高中数学 > 题目详情
15.在区间$[{-\frac{π}{4},\frac{2π}{3}}]$上任取一个数x,则函数$f(x)=3sin({2x-\frac{π}{6}})$的值不小于0的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{6}{11}$D.$\frac{7}{12}$

分析 本题是几何概型的考查,利用区间长度的比即可求概率.

解答 解:∵函数$f(x)=3sin({2x-\frac{π}{6}})$,
当$x∈[{-\frac{π}{4},\frac{2π}{3}}]$时,$2x-\frac{π}{6}∈[{-\frac{2π}{3},\frac{7π}{6}}]$,
当$2x-\frac{π}{6}∈[{0,π}]$,即$x∈[{\frac{π}{12},\frac{7π}{12}}]$时,
f(x)≥0,
则所求概率为P=$\frac{{\frac{7π}{12}-\frac{π}{12}}}{{\frac{2π}{3}-({-\frac{π}{4}})}}=\frac{6}{11}$.
故选:C.

点评 本题考查了几何概型的概率求法;关键是正确选择测度比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)满足f(x+2)=f(x),且f(x)是偶函数,当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有四个零点,则实数k的取值范围是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知cosα+2sinα=-$\sqrt{5}$,求 tanα 的值.
(2)已知tan(π+α)=$\frac{1}{2}$,求$\frac{sin(α-π)cos(α-\frac{π}{2})-co{s}^{2}(-π-α)}{1-sin(-π-α)sin(-\frac{π}{2}+α)+co{s}^{2}(α+π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直角梯形ABCD中,AB⊥AD,AB∥CD,PD⊥面ABCD,QC⊥面ABCD,且AB=AD=PD=QC=$\frac{1}{2}$CD,
(1)设直线QB与平面PDB所成角为θ,求sinθ的值;
(2)设M为AD的中点,在PD边上求一点N,使得MN∥面PBC,求$\frac{DN}{NP}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-t|+$\frac{t}{x}$(x>0);
(1)判断函数y=f(x)在区间(0,t]上的单调性,并证明;
(2)若函数y=f(x)的最小值为与t无关的常数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下关于函数f(x)=sin2x-cos2x的命题,正确的是(  )
A.函数f(x)在区间$(0,\frac{2}{3}π)$上单调递增
B.直线$x=\frac{π}{8}$是函数y=f(x)图象的一条对称轴
C.点$(\frac{π}{4},0)$是函数y=f(x)图象的一个对称中心
D.将函数y=f(x)的图象向左平移$\frac{π}{8}$个单位,可得到$y=\sqrt{2}sin2x$的图象

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{{\begin{array}{l}{x+2}&{({x≤-1})}&{\;}\\{2x}&{({-1<x<2})}&{\;}\\{\frac{x^2}{2}}&{({x≥2})}&{\;}\end{array}}\right.$则$f[{f({-\frac{7}{4}})}]$=(  )
A.$\frac{1}{4}$B.-7C.$\frac{1}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个说法:
①f(x)=x0与g(x)=1是同一个函数;
②y=f(x),x∈R与y=f(x+1),x∈R可能是同一个函数;
③y=f(x),x∈R与y=f(t),t∈R是同一个函数;
④定义域和值域相同的函数是同一个函数.
其中正确的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=sinx+cosx,则f($\frac{π}{12}$)的值为(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案