解答:解:(1)∵S
1=1,
=
,
∴a
n+1=S
n+1-S
n=
Sn,-------------------------(2分)
∴a
1=S
1=1,a
2=cS
1=c,a
3=
S2=
(1+c).
∵a
1,a
2,a
3成等差数列,
∴2a
2=a
1+a
3,
即2c=1+
,
∴c
2-3c+2=0.---------------------------------------------------(5分)
解得c=2,或c=1(舍去).-----------------------------------------------------------------(6分)
(2)∵)∵S
1=1,
=
,
∴S
n=S
1×
×…×
=1×
×
×…×
=
(n≥2),-------------------(8分)
∴a
n=S
n-S
n-1=
-
=n(n≥2),------------------------------------------(9分)
又a
1=1,∴数列{a
n}的通项公式是a
n=n(n∈N
*).-----------------------------------(10分)
(3)证明:∵数列{b
n}是首项为1,公比为c的等比数列,
∴b
n=c
n-1.---------(11分)
∵A
2n=a
1b
1+a
2b
2+…+a
2nb
2n,B
2n=a
1b
1-a
2b
2+…-a
2nb
2n,
∴A
2n+B
2n=2(a
1b
1+a
3b
3+…+a
2n-1b
2n-1),①
A
2n-B
2n=2(a
2b
2+a
4b
4+…+a
2nb
2n),②
①式两边乘以c得 c(A
2n+B
2n)=2(a
1b
2+a
3b
4+…+a
2n-1b
2n)③
由②③得(1-c)A
2n-(1+c)B
2n=A
2n-B
2n-c(A
2n+B
2n)
=2[(a
2-a
1)b
2+(a
4-a
3)b
4+…+(a
2n-a
2n-1)b
2n]
=2(c+c
3+…+c
2n-1)
=
,
将c=2代入上式,得A
2n+3B
2n=
(1-4
n).-----------------------------------------(14分)
另证:先用错位相减法求A
n,B
n,再验证A
2n+3B
2n=
(1-4
n).
∵数列{b
n}是首项为1,公比为c=2的等比数列,∴
bn=2n-1.--------------(11分)
又是a
n=n(n∈N
*),所以A
2n=1×2
0+2×2
1+…+2n×2
2n-1①
B
2n=1×2
0-2×2
1+…-2n×2
2n-1②
将①乘以2得:
2A
2n=1×2
1+2×2
2+…+2n×2
2n③
①-③得:-A
2n=2
0+2
1+…+2
2n-1-2n×2
2n=
-2n×2
2n,
整理得:A
2n=4
n(2n-1)+1-------------------------(12分)
将②乘以-2得:-2B
2n=-1×2
1+2×2
2-…+2n×2
2n④
②-④整理得:3B
2n=2
0-2
1+…+2
2n-1-2n×2
2n=
-2n×2
2n=
-2n×4
n,(13分)
∴A
2n+3B
2n=
(1-4
n)-----------------------------------------(14分)