精英家教网 > 高中数学 > 题目详情
19.已知圆C经过A(5,2),B(-1,4)两点,且圆心在x轴上,则圆C的方程为(x-1)2+y2=20.

分析 根据题意,设圆心为C(a,0),由两点的距离公式建立关于a的方程,解出a=1,从而算出圆心坐标和半径R,即可得到所求圆的标准方程.

解答 解:设圆心为C(a,0)
由两点的距离公式,得|CA|=$\sqrt{(5-a)^{2}+4}$,|CB|=$\sqrt{(-1-a)^{2}+16}$
∵两点A(5,2),B(-1,4)在圆上
∴|CA|=|CB|,得$\sqrt{(5-a)^{2}+4}$=$\sqrt{(-1-a)^{2}+16}$
解之得a=1,可得圆心C(1,0),半径R=2$\sqrt{5}$
因此可得所求圆的方程为(x-1)2+y2=20
故答案为:(x-1)2+y2=20.

点评 本题给出圆心在定点且经过两点的圆的方程,着重考查了两点的距离公式和圆的标准方程的知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.对于抛物线y=4x2,下列描述正确的是(  )
A.开口向上B.开口向下C.开口向左D.开口向右

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=lg(5-x),若f(2k-1)<f(k+1),则实数k的取值范围是2<k<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)是奇函数,当x≥0时f(x)=x(x+1),则当x<0时f(x)=(  )
A.x(-x+1)B.-x(-x+1)C.x(x+1)D.-x(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求满足下列函数的解析式.
(1)f(1+x)=4x+2;
(2)$f(\frac{1}{2}x)=2{x^2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知M,N为y轴正半轴上的两个动点,点P(异于原点O)为x轴上的一个定点,若以MN为直径的圆与圆(x-3)2+y2=4相外切,且∠MPN的大小恒为定值,则线段OP的长为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若0<a<1,-1<b<0,则函数y=ax+b的图象必不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列结论正确的是(  )
A.若数列{an}的前n项和为Sn,Sn=n2+n+1,则{an}为的等差数列
B.若数列{an}的前n项和为Sn,Sn=2n-2,则{an}为等比数列
C.非零实数a,b,c不全相等,若a,b,c成等差数列,则$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$可能构成等差数列
D.非零实数a,b,c不全相等,若a,b,c成等比数列,则$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$一定构成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知函数f(x)=ax+lnx,则当a<0时,f(x)的单调增区间是(0,-$\frac{1}{a}$),f(x)的单调减区间是(-$\frac{1}{a}$,+∞).
(2)已知函数f(x)=lnx,g(x)=$\frac{1}{2}$ax2+2x,a≠0,若函数h(x)=f(x)-g(x)在[1,4]上单调递减,求a的取值范围.

查看答案和解析>>

同步练习册答案