设函数.
(1)当时,证明:函数不是奇函数;
(2)设函数是奇函数,求与的值;
(3)在(2)条件下,判断并证明函数的单调性,并求不等式的解集.
(1)详见解析;(2);(3).
解析试题分析:(1)当时,,函数的定义域为,要证明函数不是奇函数,从奇函数的定义出发,可考虑选一个特殊值,满足,若最简单;(2)由函数是奇函数,则有对函数定义域内的任意一个,都满足,由此等式恒成立可得关于的等式求出,也可先用特殊数值求出,再进行检验;(3)先判断函数的单调性,再用定义法或导数法证明,再解不等式,解不等式时可直接求解,也可利用函数单调性求解.
试题解析:(1)当时,
由,知函数不是奇函数.
(2)由函数是奇函数,得,
即对定义域内任意实数都成立,化简整理得
对定义域内任意实数都成立
所以,所以或
经检验符合题意.
(3)由(2)可知
易判断为R上的减函数,证明如下:
因为,所以为R上的减函数;
由,不等式即为,由在R上的减函数可得,
所以不等式的解集为.
另解:由得,即,解得,所以.
(注:若没有证明的单调性,直接解不等式,正确的给3分)
考点:函数的的单调性和奇偶性.
科目:高中数学 来源: 题型:解答题
某地开发了一个旅游景点,第1年的游客约为100万人,第2年的游客约为120万人.某数学兴趣小组综合各种因素预测:①该景点每年的游客人数会逐年增加;②该景点每年的游客都达不到130万人.该兴趣小组想找一个函数来拟合该景点对外开放的第年与当年的游客人数(单位:万人)之间的关系.
(1)根据上述两点预测,请用数学语言描述函数所具有的性质;
(2)若=,试确定的值,并考察该函数是否符合上述两点预测;
(3)若=,欲使得该函数符合上述两点预测,试确定的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.
(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;
(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;
(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com