精英家教网 > 高中数学 > 题目详情

【题目】将一个总体的100个个体编号为01299,并依次将其分为10个组,组号为0129.要用系统抽样法抽取一个容量为10的样本,如果在第0(号码为0—9)随机抽取的号码为2,则抽取的10个号码为______________.

【答案】2122232425262728292.

【解析】

由总体容量及组数求出间隔号,由0组抽取的号码,确定以后每组的序号,即可得到答案.

解:总体为100个个体,依编号顺序平均分成10个小组,则间隔号为

在第0组抽取的号码为2,为该组的第3个数,按照系统抽样则以后每组都抽取第3个数,

则抽取的10个号码分别是:2122232425262728292.

故答案为:2122232425262728292.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项数列的前项和为,且,等比数列的首项为1,公比为),且成等差数列.

(1)求的通项公式;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年4月4日召开的国务院常务会议明确将进一步推动网络提速降费工作落实,推动我国数字经济发展和信息消费,今年移动流量资费将再降30%以上,为响应国家政策,某通讯商计划推出两款优惠流量套餐,详情如下:

套餐名称

月套餐费/元

月套餐流量/M

A

30

3000

B

50

6000

这两款套餐均有以下附加条款:套餐费用月初一次性收取,手机使用流量一旦超出套餐流量,系统就会自动帮用户充值2000M流量,资费20元;如果又超出充值流量,系统再次自动帮用户充值2000M流量,资费20元,以此类推。此外,若当月流量有剩余,系统将自动清零,不可次月使用。

小张过去50个月的手机月使用流量(单位:M)的频数分布表如下:

月使用流量分组

[2000,3000]

(3000,4000]

(4000,5000]

(5000,6000]

(6000,7000]

(7000,8000]

频数

4

5

11

16

12

2

根据小张过去50个月的手机月使用流量情况,回答以下几个问题:

(1)若小张选择A套餐,将以上频率作为概率,求小张在某一个月流量费用超过50元的概率.

(2)小张拟从A或B套餐中选定一款,若以月平均费用作为决策依据,他应订购哪一种套餐?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。

I)求应从小学、中学、大学中分别抽取的学校数目。

II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,

1)列出所有可能的抽取结果;

2)求抽取的2所学校均为小学的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个总体容量为60,其中的个体编号为00010259.现需从中抽取一个容量为7的样本,请从随机数表的倒数第5(下表为随机数表的最后5)1112列的18开始,依次向下,到最后一行后向右,直到取足样本,则抽取样本的号码是_____________

95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95

38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80

82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50

24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49

96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.

(1)求曲线C1的极坐标方程和C2的直角坐标方程;

(2)射线OP:(其中)与C2交于P点,射线OQ:与C2交于Q点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

(1)当时,求函数上的最值;

(2)若函数上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M(1),过点P(2,1)的直线l与椭圆C相交于不同的两点AB.

1)求椭圆C的方程;

2)是否存在直线l,满足?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年2月22日.在平昌冬奥会短道速滑男子500米比赛中.中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况.收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时).又在100位女生中随机抽取20个人.已知这20位女生的数据茎叶图如图所示.

(1)将这20位女生的时间数据分成8组,分组区间分别为,在答题卡上完成频率分布直方图;

(2)以(1)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;

(3)以(1)中的频率估计100位女生中累计观看时间小于20个小时的人数.已知200位男生中累计观看时间小于20小时的男生有50人请完成答题卡中的列联表,并判断是否有99 %的把握认为“该校学生观看冬奥会累计时间与性别有关”.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:.

查看答案和解析>>

同步练习册答案