精英家教网 > 高中数学 > 题目详情

,其中是常数,且
(1)求函数的极值;
(2)证明:对任意正数,存在正数,使不等式成立;
(3)设,且,证明:对任意正数都有:

(1) 当时,取极大值,但没有极小值;(2)详见解析;(3)详见解析.

解析试题分析:(1)先求导,再讨论函数的单调区间,然后写出函数的极值;(2)通过依次构造函数,利用导数来研究其单调性和最值情况,从而用来比较大小,最终达到证明不等式的目的; (3)先把所要证明的不等式的左边转变到函数的问题,得到相关的不等式,再借助(1)中的结论得到,最后取即可证得.
试题解析:(1)∵,         1分
得,
,即,解得,       3分
故当时,;当时,
∴当时,取极大值,但没有极小值.       4分
(2)∵,又当时,令,则

,因此原不等式化为,即
,则
得:,解得
时,;当时,
故当时,取最小值,  8分
,则
,即
因此,存在正数,使原不等式成立.         10分
(3)对任意正数,存在实数使

原不等式
          12分
由(1)恒成立,故
,即得
,故所证不等式成立.           14分
考点:1、导数的应用,2、函数单调性的应用,3、不等式的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(a,b均为正常数).
(1)求证:函数内至少有一个零点;
(2)设函数在处有极值,
①对于一切,不等式恒成立,求的取值范围;
②若函数f(x)在区间上是单调增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)在区间上画出函数的图象 ;
(2)设集合. 试判断集合之间
的关系,并给出证明 ;
(3)当时,求证:在区间上,的图象位于函数图象的上方.
   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足 在上恒成立.
(1)求的值;
(2)若,解不等式
(3)是否存在实数,使函数在区间上有最小值?若存在,请求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求曲线在原点处的切线方程;
(Ⅱ)当时,讨论函数在区间上的单调性;
(Ⅲ)证明不等式对任意成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设F(x)=3a+2bx+c,若a+b+c=0,且F(0)>0,F(1)>0.
求证:a>0,且—2<<—1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)请写出函数在每段区间上的解析式,并在图中的直角坐标系中作出函数的图象;
(II)若不等式对任意的实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,a≠1,设p:函数内单调递减,q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p与q有且只有一个正确,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设定义在上的奇函数f(x)在上是减函数,若f(1-m)< f(m)
的取值范围.

查看答案和解析>>

同步练习册答案