【题目】某地开发一片荒地,如图,荒地的边界是以C为圆心,半径为1千米的圆周.已有两条互相垂直的道路OE,OF,分别与荒地的边界有且仅有一个接触点A,B.现规划修建一条新路(由线段MP,,线段QN三段组成),其中点M,N分别在OE,OF上,且使得MP,QN所在直线分别与荒地的边界有且仅有一个接触点P,Q,所对的圆心角为.记∠PCA=(道路宽度均忽略不计).
(1)若,求QN的长度;
(2)求新路总长度的最小值.
【答案】(1)QN的长度为1千米(2)
【解析】
(1)连接,通过切线的几何性质,证得四边形是正方形,由此求得的长度.
(2)用表示出线段,,线段的长,由此求得新路总长度的表达式,利用基本不等式求得新路总长度的最小值.
(1)连接CB,CN,CM,OM⊥ON,OM,ON,PM,QN均与圆C相切
∴CB⊥ON,CA⊥OM,CP⊥MP,CQ⊥NQ,∴CB⊥CA
∵∠PCA=,∠PCQ=,∴∠QCB=,
此时四边形BCQN是正方形,∴QN=CQ=1,
答:QN的长度为1千米;
(2)∵∠PCA=,可得∠MCP=,∠NCQ=,
则MP=,,NQ=
设新路长为,其中(,),即
∴,
,当时取“=”,
答:新路总长度的最小值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,为椭圆上任意一点,且已知.
(1)若椭圆的短轴长为,求的最大值;
(2)若直线交椭圆的另一个点为,直线交轴于点,点关于直线对称点为,且,三点共线,求椭圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).
①35.6%的客户认为态度良好影响他们的满意度;
②156位客户认为使用礼貌用语影响他们的满意度;
③最影响客户满意度的因素是电话接起快速;
④不超过10%的客户认为工单派发准确影响他们的满意度.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为2。
(1)求椭圆的方程;
(2)如图,斜率为k的直线l过椭圆的右焦点F,且与椭圆交与A,B两点,以线段AB为直径的圆截直线x=1所得的弦的长度为,求直线l的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥中,,,,.有以下结论:①三棱锥的表面积为;②三棱锥的内切球的半径;③点到平面的距离为;其中正确的是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com