精英家教网 > 高中数学 > 题目详情

【题目】某地开发一片荒地,如图,荒地的边界是以C为圆心,半径为1千米的圆周.已有两条互相垂直的道路OEOF,分别与荒地的边界有且仅有一个接触点AB.现规划修建一条新路(由线段MP,线段QN三段组成),其中点MN分别在OEOF上,且使得MPQN所在直线分别与荒地的边界有且仅有一个接触点PQ所对的圆心角为.记∠PCA(道路宽度均忽略不计).

1)若,求QN的长度;

2)求新路总长度的最小值.

【答案】1QN的长度为1千米(2

【解析】

1)连接,通过切线的几何性质,证得四边形是正方形,由此求得的长度.

2)用表示出线段,线段的长,由此求得新路总长度的表达式,利用基本不等式求得新路总长度的最小值.

1)连接CBCNCMOMONOMONPMQN均与圆C相切

CBONCAOMCPMPCQNQ,∴CBCA

∵∠PCA,∠PCQ,∴∠QCB

此时四边形BCQN是正方形,∴QNCQ1

答:QN的长度为1千米;

2)∵∠PCA,可得∠MCP,∠NCQ

MPNQ

设新路长为,其中(),即

,当时取“=”,

答:新路总长度的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为为椭圆上任意一点,且已知.

1)若椭圆的短轴长为,求的最大值;

2)若直线交椭圆的另一个点为,直线轴于点,点关于直线对称点为,且三点共线,求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司以客户满意为出发点,随机抽选2000名客户,以调查问卷的形式分析影响客户满意度的各项因素.每名客户填写一个因素,下图为客户满意度分析的帕累托图.帕累托图用双直角坐标系表示,左边纵坐标表示频数,右边纵坐标表示频率,分析线表示累计频率,横坐标表示影响满意度的各项因素,按影响程度(即频数)的大小从左到右排列,以下结论正确的个数是( ).

35.6%的客户认为态度良好影响他们的满意度;

156位客户认为使用礼貌用语影响他们的满意度;

③最影响客户满意度的因素是电话接起快速;

④不超过10%的客户认为工单派发准确影响他们的满意度.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为2

(1)求椭圆的方程;

(2)如图,斜率为k的直线l过椭圆的右焦点F,且与椭圆交与A,B两点,以线段AB为直径的圆截直线x=1所得的弦的长度为,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,两两垂直,四边形是边长为2的正方形,ACDGEF,且.

1)证明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若在定义域内单调递增,求实数的值;

2)若在定义域内有唯一的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数在点处的切线与函数相切.

1)求函数的值域;

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,.有以下结论:①三棱锥的表面积为;②三棱锥的内切球的半径;③点到平面的距离为;其中正确的是(

A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的最小值;

2)若,且,证明:.

查看答案和解析>>

同步练习册答案