精英家教网 > 高中数学 > 题目详情

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.
(1)求证:直线l恒过定点;
(2)求直线l被圆C截得的弦长的最小值及此时m的值.

(1)证明:直线l:(2m+1)x+(m+1)y-7m-4=0可化为m(2x+y-7)+(x+y-4)=0
,解得
∴直线l恒过定点A(3,1)
(2)解:直线l被圆C截得的弦长的最小时,弦心距最大,此时CA⊥l
∵圆C:(x-1)2+(y-2)2=25,圆心(1,2),半径为5
∴CA的斜率为=-
∴l的斜率为2
∵直线l:(2m+1)x+(m+1)y-7m-4=0的斜率为


∵|CA|==
∴直线l被圆C截得的弦长的最小值为2=
分析:(1)直线l:(2m+1)x+(m+1)y-7m-4=0可化为m(2x+y-7)+(x+y-4)=0,解方程组,可得直线l恒过定点;
(2)直线l被圆C截得的弦长的最小时,弦心距最大,此时CA⊥l,求出CA的斜率,可得l的斜率,从而可求m的值,求出弦心距,可得直线l被圆C截得的弦长的最小值.
点评:本题考查直线恒过定点,考查弦长的计算,解题的关键是掌握圆的特殊性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,则点M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B
(1)当弦AB被点P平分时,写出直线l的方程;
(2)当直线l的倾斜角为45°时,求弦AB的长.
(3)设圆C与x轴交于M、N两点,有一动点Q使∠MQN=45°.试求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB的长为4
2
时,写出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=5,直线l:x-y=0,则C关于l的对称圆C′的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y+1)2=1,那么圆心C到坐标原点O的距离是
2
2

查看答案和解析>>

同步练习册答案