【题目】孙子定理是中国古代求解一次同余式组的方法,是数论中一个重要定理,最早可见于中国南北朝时期的数学著作《孙子算经》,年英国来华传教士伟烈亚力将其问题的解法传至欧洲,年英国数学家马西森指出此法符合年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.这个定理讲的是一个关于整除的问题,现有这样一个整除问题:将至这个整数中能被除余且被除余的数按由小到大的顺序排成一列构成一数列,则此数列的项数是( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】已知函数(aR),其中e为自然对数的底数.
(1)若,求函数的单调减区间;
(2)若函数的定义域为R,且,求a的取值范围;
(3)证明:对任意,曲线上有且仅有三个不同的点,在这三点处的切线经过坐标原点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】实现国家富强.民族复兴.人民幸福是“中国梦”的本质内涵.某商家计划以“全民健身促健康,同心共筑中国梦”为主题举办一次有奖消费活动,此商家先把某品牌乒乓球重新包装,包装时在每个乒乓球上印上“中”“国”“梦”三个字样中的一个,之后随机装盒(1盒4个球),并规定:若顾客购买的一盒球印的是同一个字,则此顾客获得一等奖;若顾客购买的一盒球集齐了“中”“国”二字且仅有此二字,则此顾客获得二等奖;若顾客购买的一盒球集齐了“中”“国”“梦”三个字,则此顾客获得三等奖,其它情况不设奖,则顾客购买一盒乒乓球获奖的概率是_____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家政公司对部分员工的服务进行民意调查,调查按各项服务标准进行量化评分,婴幼儿保姆部对40~50岁和20~30岁各20名女保姆的调查结果如下:
分数 年龄 | |||||
40~50岁 | 0 | 2 | 4 | 7 | 7 |
20~30岁 | 3 | 5 | 5 | 5 | 2 |
(1)若规定评分不低于80分为优秀保姆,试分别估计这两个年龄段保姆的优秀率;
(2)按照大于或等于80分为优秀保姆,80分以下为非优秀保姆统计.作出列联表,并判断能否有的把握认为对保姆工作质量的评价是否优秀与年龄有关.
(3)从所有成绩在70分以上的人中按年龄利用分层抽样抽取10名保姆,再从这10人中选取3人给大家作经验报告,设抽到40~50岁的保姆的人数为,求出的分布列与期望值.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,直线交椭圆于两点,为坐标原点.
(1)若直线过椭圆的右焦点,求的面积;
(2)若,试问椭圆上是否存在点,使得四边形为平行四边形?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界第一产粮大国,我国粮食产量很高,整体很安全按照14亿人口计算,中国人均粮食产量约为950斤﹣比全球人均粮食产量高了约250斤.如图是中国国家统计局网站中2010﹣2019年,我国粮食产量(千万吨)与年末总人口(千万人)的条形图,根据如图可知在2010﹣2019年中( )
A.我国粮食年产量与年末总人口均逐年递增
B.2011年我国粮食年产量的年增长率最大
C.2015年﹣2019年我国粮食年产量相对稳定
D.2015年我国人均粮食年产量达到了最高峰
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}为正项等比数列,a1=1,数列{bn}满足b2=3,a1b1+a2b2+a3b3+…+anbn=3+(2n﹣3)2n.
(1)求an;
(2)求的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且四个顶点构成的四边形的面积是.
(1)求椭圆的方程;
(2)已知直线经过点,且不垂直于轴,直线与椭圆交于,两点,为的中点,直线与椭圆交于,两点(是坐标原点),求四边形的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com