精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆经过点,其左焦点为.点的直线交椭圆于两点,交轴的正半轴于点.

1)求椭圆的方程;

2)过点且与垂直的直线交椭圆于两点,若四边形的面积为,求直线的方程;

3)设,求证:为定值.

【答案】1;(2;(3)证明见解析.

【解析】

1)根据题意列出有关的方程组,解出的值,即可得出椭圆的标准方程;

2)设直线的方程为,则,设点,将直线的方程与椭圆的方程联立,列出韦达定理,利用弦长公式求出关于的表达式,同理得出关于的表达式,由可得出关于的方程,解出正数的值,即可得出直线的方程;

3)求出点的坐标,利用向量的坐标运算可得出的表达式,代入韦达定理计算出的值,由此可证明出结论成立.

1)由题意得,解得,因此,椭圆的方程为

2)设直线,设点

,消去

同理

四边形的面积为

整理得,解得

因为,所以

因此,直线的方程为,或.

3)在直线的方程中,令,得,即点

,同理可得

.

因此,为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率,他从单位圆内接正六边形算起,令边数一倍一倍地增加,即122448192,逐个算出正六边形,正十二边形,正二十四边形,,正一百九十二边形,的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想极其重要,对后世产生了巨大影响.按照上面“割圆术”,用正二十四边形来估算圆周率,则的近似值是( )(精确到.(参考数据

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中,二面角是直二面角,

(1)求证:平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,四边形是等腰梯形,的中点.沿折起,如图2,点是棱上的点.

1)若的中点,证明:平面平面

2)若,试确定的位置,使二面角的余弦值等于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数对任意的满足:,当时,

1)求出函数在R上零点;

2)求满足不等式的实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线为公海与领海的分界线,一艘巡逻艇在原点处发现了北偏东 海面上处有一艘走私船,走私船正向停泊在公海上接应的走私海轮航行,以便上海轮后逃窜.已知巡逻艇的航速是走私船航速的2倍,且两者都是沿直线航行,但走私船可能向任一方向逃窜.

1)如果走私船和巡逻船相距6海里,求走私船能被截获的点的轨迹;

2)若与公海的最近距离20海里,要保证在领海内捕获走私船,则之间的最远距离是多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的极值点的个数;

2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191118日国际射联步手枪世界杯总决赛在莆田市综合体育馆开幕,这是国际射联步手枪世界杯总决赛时隔10年再度走进中国.为了增强趣味性,并实时播报现场赛况,我校现场小记者李明和播报小记者王华设计了一套播报转码法,发送方由明文密文(加密),接受方由密文明文(解密),已知加密的方法是:密码把英文的明文(真实文)按字母分解,其中英文的26个字母(不论大小写)依次对应1232626个自然数通过变换公式:,将明文转换成密文,如,即变换成,即变换成.若按上述规定,若王华收到的密文是,那么原来的明文是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬中华民族优秀传统文化,树立正确的价值导向,落实立德树人根本任务,某市组织30000名高中学生进行古典诗词知识测试,根据男女学生人数比例,使用分层抽样的方法从中随机抽取100名学生,记录他们的分数,整理所得频率分布直方图如图:

)规定成绩不低于60分为及格,不低于85分为优秀,试估计此次测试的及格率及优秀率;

)试估计此次测试学生成绩的中位数;

)已知样本中有的男生分数不低于80分,且样本中分数不低于80分的男女生人数相等,试估计参加本次测试30000名高中生中男生和女生的人数.

查看答案和解析>>

同步练习册答案