精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)证明:函数在区间上是减函数;

(2)当时,证明:函数只有一个零点.

【答案】(1)证明见解析;(2)证明见解析.

【解析】试题分析:(1)只需证明f(x)的导函数恒成立,且不恒等于0.注意定义域和参数的范围。(2)时, ,其定义域是,通过求导分析函数的单调性及极值可知函数f(x)的图像与x轴相切于(1,0)点,其余点均在x轴下方,所以只有一个零点。

试题解析:(1)显然函数的定义域为. 

.

,∴ ,∴

所以函数上是减函数.

(2)当时, ,其定义域是

. 

,即,解得.

,∴舍去.

时, ;当时, . 

∴函数在区间上单调递增,在区间上单调递减,

∴当时,函数取得最大值,其值为

时, ,即

∴函数只有一个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知矩形和菱形所在平面互相垂直,如图,其中 ,点为线段的中点.

(Ⅰ)试问在线段上是否存在点,使得直线平面?若存在,请证明平面,并求出的值,若不存在,请说明理由;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件: ;则z=x﹣2y的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)对于任意实数x,不等式sin x+cos x>m恒成立,求实数m的取值范围;

(2)存在实数x,不等式sin x+cos x>m有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个抛物线型的拱桥,当水面离拱顶2 m时,水宽4 m,若水面下降1 m,求水的宽度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求适合下列条件的双曲线的标准方程:

(1)以椭圆的长轴端点为焦点,且经过点P(5, );

(2)过点P1(3,-4 ),P2(,5).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若要按从大到小给7,5,9,3,10五个数排序,试写出算法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.

(1)设每盘游戏获得的分数为,求的分布列;

(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?

(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了响应教育部颁布的《关于推进中小学生研学旅行的意见》,某校计划开设八门研学旅行课程,并对全校学生的选课意向进行调查(调查要求全员参与,每个学生必须从八门课程中选出唯一一门课程).本次调查结果如下.

图中,课程为人文类课程,课程为自然科学类课程.为进一步研究学生选课意向,结合上面图表,采取分层抽样方法从全校抽取1%的学生作为研究样本组(以下简称“组”).

(Ⅰ)在“组”中,选择人文类课程和自然科学类课程的人数各有多少?

(Ⅱ)某地举办自然科学营活动,学校要求:参加活动的学生只能是“组”中选择

程或课程的同学,并且这些同学以自愿报名缴费的方式参加活动. 选择课程的学生中有人参加科学营活动,每人需缴纳元,选择课程的学生中有人参加该活动,每人需缴纳元.记选择课程和课程的学生自愿报名人数的情况为,参加活动的学生缴纳费用总和为元.

①当时,写出的所有可能取值;

②若选择课程的同学都参加科学营活动,求元的概率.

查看答案和解析>>

同步练习册答案