精英家教网 > 高中数学 > 题目详情
已知命题p:方程x2+ax+1=0有两个不等的实根;q:方程4x2+2(a-4)x+1=0无实根,若“p或q”为真,“p且q”为假,求实数a的取值范围.
分析:分别求出命题p、q为真命题时,a的取值范围,根据复合命题真值表判断若“p或q”为真,“p且q”为假时,命题p、q一真一假,可求a的取值范围.
解答:解:∵方程x2+ax+1=0有两个不等的实根,
∴△=a2-4>0⇒a>2或a<-2,
命题p为真时,a>2或a<-2;
∵方程4x2+2(a-4)x+1=0无实根,
∴△=4(a-4)2-16<0⇒2<a<6,
命题q为真时,2<a<6;
由复合命题真值表知:若“p或q”为真,“p且q”为假时,命题p、q一真一假
当p真q假时,
a>2或a<-2
a≥6或a≤2
⇒a≥6或a<-2,
当p假q真时,
-2≤a≤2
2<a<6
⇒a∈∅,
综上a的范围是a≥6或a<-2.
点评:本题考查命题的真假判断和应用,解题时要认真审题,注意解不等式公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的负实根;q:方程mx2+(m-1)x+m=0无实根.若“p或q”为真,p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2+mx+1=0有两个不相等的负实数根;命题Q:函数f(x)=lg[4x2+(m-2)x+1]的定义域为实数集R,若P或Q为真,P且Q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:“方程x2+
y2m
=1表示焦点在y轴上的椭圆”;命题Q:“方程2x2-4x+m=0没有实数根”.若P∧Q假,P∨Q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2-2mx+m=0没有实数根;
命题Q:?x∈R,x2+mx+1≥0.
(1)写出命题Q的否定“¬Q”;
(2)如果“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.
(1)若p为真命题,求m的取值范围;
(2)若q为真命题,求m的取值范围;
(3)若“p或q”为真命题,求m的取值范围.

查看答案和解析>>

同步练习册答案