精英家教网 > 高中数学 > 题目详情
若函数f(x)=ex-ax在区间(1,+∞)上单调递增,则实数a的取值范围为
a≤e
a≤e
分析:函数f(x)=ex-ax在区间(1,+∞)上单调递增?函数f′(x)=ex-a≥0在区间(1,+∞)上恒成立,
?a≤[ex]min在区间(1,+∞)上成立.
解答:解:f′(x)=ex-a,
∵函数f(x)=ex-ax在区间(1,+∞)上单调递增,
∴函数f′(x)=ex-a≥0在区间(1,+∞)上恒成立,
∴a≤[ex]min在区间(1,+∞)上成立.
而ex>e,
∴a≤e.
故答案为a≤e.
点评:正确把问题等价转化、熟练掌握利用导数研究函数的单调性、极值与最值等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、若函数f(x)=ex-2x-a在R上有两个零点,则实数a的取值范围是
(2-2ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ex+ae-x,其导函数是奇函数,并且曲线y=f(x)的一条切线的斜率是
3
2
,则切点的横坐标是(  )
A、-
ln2
2
B、-ln2
C、
ln2
2
D、ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
ex+1,x≤0
lnx  ,x>0
,则f(f(-2))=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ex+
3
x
,则此函数图象在点(1,f(1))处的切线的倾斜角为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|ex+
a
ex
|
x∈[-
1
2
,1]
上增函数,则实数a的取值范围是
[-
1
e
1
e
]
[-
1
e
1
e
]

查看答案和解析>>

同步练习册答案