分析 (1)由已知得DC⊥BC,BC⊥AC,从而BC⊥平面ACD,由此能证明DE⊥平面ADE.
(2)由BE⊥平面ABC,BE=$\sqrt{3}$,由BC=$\sqrt{4-{x}^{2}}$(0<x<2),得S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}x\sqrt{4-{x}^{2}}$,由此能求出V(x)的表达式及最大值.
解答 证明:(1)证明:∵四边形DCBE为平行四边形,
∴CD∥BE,BC∥DE,
∵CD⊥平面ABC,AB=2,AE与平面ABC所成的角为θ,且$tanθ=\frac{{\sqrt{3}}}{2}$,
BC?平面ABC,∴DC⊥BC,
∵AB为圆O的直径,∴BC⊥AC,且DC∩AC=C,
∴BC⊥平面ACD,
∵DE∥BC,∴DE⊥平面ACD,
又DE?平面ADE,∴平面ACD⊥平面ADE.
解:(2)∵DC⊥平面ABC,CD∥BE,
∴BE⊥平面ABC,
在Rt△ABE中,由tan∠EAB=$\frac{BE}{AB}$=$\frac{\sqrt{3}}{2}$,AB=2,得BE=$\sqrt{3}$,
在Rt△ABC中,∵BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=$\sqrt{4-{x}^{2}}$(0<x<2),
S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}x\sqrt{4-{x}^{2}}$,
∴V(x)=VA-CBE=$\frac{1}{3}$S△ABC•BE=$\frac{\sqrt{3}}{6}•\sqrt{{x}^{2}(4-{x}^{2})}$≤$\frac{\sqrt{3}}{6}•\frac{{x}^{2}+(4-{x}^{2})}{2}$=$\frac{\sqrt{3}}{3}$,
当且仅当x2=4-x2,即x=$\sqrt{2}$∈(0,2)时,“=”成立.
即当AC=$\sqrt{2}$时,V(x)取得最大值$\frac{\sqrt{3}}{3}$.
∴$V(x)=\frac{{\sqrt{3}}}{6}x\sqrt{4-{x^2}}$(0<x<2),$V{(x)_{max}}=\frac{{\sqrt{3}}}{3}$.
点评 本题考查平面与平面垂直的证明,考查三棱锥体积的表达式及最大值的求法,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | $\frac{3}{2}$ | C. | $\frac{5}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {2,4,6,8,9} | B. | {2,4,6,8,9,10} | C. | {1,2,6,8,9,10} | D. | {4,6,8,10} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0” | |
B. | 命题“角α的终边在第一象限,则α是锐角”的逆命题为真命题 | |
C. | 已知命题p和q,若p∨q为假命题,则命题p与q中必一真一假 | |
D. | 命题“若x>y,则x>|y|”的逆命题是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com